1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
2 years ago
6

What is the bottlencek effect?.

Mathematics
2 answers:
Tema [17]2 years ago
7 0

The bottleneck effect is the unforeseen reduction in the size of the population due to a coincidental event. I am hoping that this answer has satisfied your query about and it will be able to help you, thank you and have a nice day.

marusya05 [52]2 years ago
5 0
{If this is a biology question} 

The bottleneck effect can be explained by the cheetah population. Cheetah's used to be unique and many before they were hunted. Their population dropped so low, breeding produced almost exact 'clones'. The bottleneck effect is when genetic diversity is lost.
You might be interested in
Another one: (12 - 7.5) - 7
mixas84 [53]

Answer:

-2.5

Step-by-step explanation:

Plugged into calculator

5 0
3 years ago
The area of the triangle formed by x− and y− intercepts of the parabola y=0.5(x−3)(x+k) is equal to 1.5 square units. Find all p
Juliette [100K]

Check the picture below.


based on the equation, if we set y = 0, we'd end up with 0 = 0.5(x-3)(x-k).

and that will give us two x-intercepts, at x = 3 and x = k.

since the triangle is made by the x-intercepts and y-intercepts, then the parabola most likely has another x-intercept on the negative side of the x-axis, as you see in the picture, so chances are "k" is a negative value.

now, notice the picture, those intercepts make a triangle with a base = 3 + k, and height = y, where "y" is on the negative side.

let's find the y-intercept by setting x = 0 now,


\bf y=0.5(x-3)(x+k)\implies y=\cfrac{1}{2}(x-3)(x+k)\implies \stackrel{\textit{setting x = 0}}{y=\cfrac{1}{2}(0-3)(0+k)} \\\\\\ y=\cfrac{1}{2}(-3)(k)\implies \boxed{y=-\cfrac{3k}{2}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of a triangle}}{A=\cfrac{1}{2}bh}~~ \begin{cases} b=3+k\\ h=y\\ \quad -\frac{3k}{2}\\ A=1.5\\ \qquad \frac{3}{2} \end{cases}\implies \cfrac{3}{2}=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)


\bf \cfrac{3}{2}=\cfrac{3+k}{2}\left( -\cfrac{3k}{2} \right)\implies \stackrel{\textit{multiplying by }\stackrel{LCD}{2}}{3=\cfrac{(3+k)(-3k)}{2}}\implies 6=-9k-3k^2 \\\\\\ 6=-3(3k+k^2)\implies \cfrac{6}{-3}=3k+k^2\implies -2=3k+k^2 \\\\\\ 0=k^2+3k+2\implies 0=(k+2)(k+1)\implies k= \begin{cases} -2\\ -1 \end{cases}


now, we can plug those values on A = (1/2)bh,


\bf \stackrel{\textit{using k = -2}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-2)\left(-\cfrac{3(-2)}{2} \right)\implies A=\cfrac{1}{2}(1)(3) \\\\\\ A=\cfrac{3}{2}\implies A=1.5 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{using k = -1}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-1)\left(-\cfrac{3(-1)}{2} \right) \\\\\\ A=\cfrac{1}{2}(2)\left( \cfrac{3}{2} \right)\implies A=\cfrac{3}{2}\implies A=1.5

7 0
3 years ago
$12,800 at 12% for 3 years find the total amount ?
HACTEHA [7]

Answer:

so first you do

12800*.12 which is  1536

so $1536 for 1 year

for 3 years multiply it by 3

1536*3=

$4608

so 4608+12800 =

17408 is totall

Mark brainliest

5 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20x%20%3D%20log_%7Ba%7D%28bc%29" id="TexFormula1" title="\rm \: x = log_{a}(
timama [110]

Use the change-of-basis identity,

\log_x(y) = \dfrac{\ln(y)}{\ln(x)}

to write

xyz = \log_a(bc) \log_b(ac) \log_c(ab) = \dfrac{\ln(bc) \ln(ac) \ln(ab)}{\ln(a) \ln(b) \ln(c)}

Use the product-to-sum identity,

\log_x(yz) = \log_x(y) + \log_x(z)

to write

xyz = \dfrac{(\ln(b) + \ln(c)) (\ln(a) + \ln(c)) (\ln(a) + \ln(b))}{\ln(a) \ln(b) \ln(c)}

Redistribute the factors on the left side as

xyz = \dfrac{\ln(b) + \ln(c)}{\ln(b)} \times \dfrac{\ln(a) + \ln(c)}{\ln(c)} \times \dfrac{\ln(a) + \ln(b)}{\ln(a)}

and simplify to

xyz = \left(1 + \dfrac{\ln(c)}{\ln(b)}\right) \left(1 + \dfrac{\ln(a)}{\ln(c)}\right) \left(1 + \dfrac{\ln(b)}{\ln(a)}\right)

Now expand the right side:

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} \\\\ ~~~~~~~~~~~~+ \dfrac{\ln(c)\ln(a)}{\ln(b)\ln(c)} + \dfrac{\ln(c)\ln(b)}{\ln(b)\ln(a)} + \dfrac{\ln(a)\ln(b)}{\ln(c)\ln(a)} \\\\ ~~~~~~~~~~~~ + \dfrac{\ln(c)\ln(a)\ln(b)}{\ln(b)\ln(c)\ln(a)}

Simplify and rewrite using the logarithm properties mentioned earlier.

xyz = 1 + \dfrac{\ln(c)}{\ln(b)} + \dfrac{\ln(a)}{\ln(c)} + \dfrac{\ln(b)}{\ln(a)} + \dfrac{\ln(a)}{\ln(b)} + \dfrac{\ln(c)}{\ln(a)} + \dfrac{\ln(b)}{\ln(c)} + 1

xyz = 2 + \dfrac{\ln(c)+\ln(a)}{\ln(b)} + \dfrac{\ln(a)+\ln(b)}{\ln(c)} + \dfrac{\ln(b)+\ln(c)}{\ln(a)}

xyz = 2 + \dfrac{\ln(ac)}{\ln(b)} + \dfrac{\ln(ab)}{\ln(c)} + \dfrac{\ln(bc)}{\ln(a)}

xyz = 2 + \log_b(ac) + \log_c(ab) + \log_a(bc)

\implies \boxed{xyz = x + y + z + 2}

(C)

6 0
2 years ago
This test will not impact your grade.
ycow [4]

Answer:

im pretty sure the distance is across the y and x axis

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • If 45 cookies will serve 15 students how many cookies are needed for 30 students
    15·1 answer
  • F(x) = x(x - 1)
    15·2 answers
  • How do the slopes of the lines created by each table compare?
    10·1 answer
  • Levi wants to order the fractions 1/3, 2/5, and 11/30 in descending order? How can you help him by using a common denominator? E
    14·1 answer
  • How many degrees °f are there between the 0°c mark and the 100°c mark?
    11·1 answer
  • How to write (1.5 x 10^-4) x (2.5 x 10^3) in scientific notation
    11·1 answer
  • Helppppp, if you could show your work too that would be so amazing!!
    10·1 answer
  • I need help on these please ​
    5·1 answer
  • Is square root of 11 a irrational number
    15·2 answers
  • 4. If you spin the spinner twice, what is the probability that the spinner will land on 5 on the first spin and 2 on the second
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!