Answer:
The 85% onfidence interval for the population proportion of new car buyers who prefer foreign cars over domestic cars is (0.151, 0.205).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:
Sample of 421 new car buyers, 75 preferred foreign cars. So 
85% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 85% onfidence interval for the population proportion of new car buyers who prefer foreign cars over domestic cars is (0.151, 0.205).
Answer:
20/24
Step-by-step explanation: Hope this helps
Answer:
The correct option is D.
Step-by-step explanation:
The given graph is the graph of a cosine function, which shifts 1 unit left.
The cosine function is defined as

Where, a is amplitude, b is frequency, c is phase shift and d is vertical shift.
If c>0, then the graph shifts c units left and if c<0, then the graph shifts c units right.
Since the graph show only phase shift and the graph shifts only one unit left, therefore required function is

Option D is correct.
Answer:
y²/324 -x²/36 = 1
Step-by-step explanation:
Where (0, ±b) are the ends of the transverse axis and y = ±(b/a)x describes the asymptotes, the equation of the hyperbola can be written as ...
y²/b² -x²/a² = 1
<h3>Application</h3>
Here, we have transverse axis endpoints of (0, ±18) and asymptotes of y = ±3x, so we can conclude ...
b = 18
b/a = 3 ⇒ a = 18/3 = 6
The equation of the hyperbola in standard form is ...
y²/324 -x²/36 = 1