1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Grace [21]
3 years ago
8

Determina la presion hidrostatica en el fondo de una alberca olimpica de 8metros de profundidad

Physics
1 answer:
Dimas [21]3 years ago
6 0
Plz write it in English
You might be interested in
sonic is sliding down a frictionless 15m tall hill. He starts at the top with a velocity of 10m/s. At the bottom of the hill he
podryga [215]

Answer:

The maximum speed of sonic at the bottom of the hill is equal to 19.85m/s and the spring constant of the spring is equal to (497.4xmass of sonic) N/m

Energy approach has been used to sole the problem.

The points of interest for the analysis of the problem are point 1 the top of the hill and point 2 the bottom of the hill just before hitting the spring

The maximum velocity of sonic is independent of the his mass or the geometry. It is only depends on the vertical distance involved

Explanation:

The step by step solution to the problem can be found in the attachment below. The principle of energy conservation has been applied to solve the problem. This means that if energy disappears in one form it will appear in another.

As in this problem, the potential and kinetic energy at the top of the hill were converted to only kinetic energy at the bottom of the hill. This kinetic energy too got converted into elastic potential energy .

x = compression of the spring = 0.89

5 0
3 years ago
A force of 660 n stretches a certain spring a distance of 0.300 m. what is the potential energy of the spring when a 70.0 kg mas
kkurt [141]
A force of 660 n stretches a certain spring a distance of 0.300 m. what is the potential energy of the spring when a 70.0 kg mass hangs vertically from it?
5 0
3 years ago
A substance with a pH of 4.0 will
eimsori [14]
PH of 4 is Acidic and its property is to turn blue litmus red
5 0
3 years ago
Read 2 more answers
Ryan applied a force of 10N and moved a book 30 cm in the direction of the force. How much was the workdone by Ryan?​
Xelga [282]
<h2><u>Question</u><u>:</u><u>-</u></h2>

Ryan applied a force of 10N and moved a book 30 cm in the direction of the force. How much was the work done by Ryan?

<h2><u>Answer:</u><u>-</u></h2>

<h3>Given,</h3>

=> Force applied by Ryan = 10N

=> Distance covered by the book after applying force = 30 cm

<h3>And,</h3>

30 cm = 0.3 m (distance)

<h3>So,</h3>

=> Work done = Force × Distance

=> 10 × 0.3

=> 3 Joules

\small \boxed{work \: done \:  by \: Ryan \:  = 3 \: Joules}

4 0
3 years ago
Chapter 21, Problem 009 Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.12
PilotLPTM [1.2K]

Answer:

a) -1.325 μC

b) 4.17μC

Explanation:

First, you need to know that charge is conserved. So, the adition of the charges, as there is no lost in charge, should always be the same. Also, after the wire is removed, both spheres will have the same charge, trying to find equilibrium. In summary:

q_1 + q_2 = constant\\q_1_f = q_2_f |Then\\q_1_f + q_2_f = 2q_1_f = q_1_o+q_2_o\\q_1_f = q_2_f = \frac{q_1_o+q_2_o}{2}

We know both q1f and q2f must be positive, because the negative charge at the beginning was the the smaller.

The electrostatic force is equal to:

F_e = k\frac{q_1q_2}{r^2}

K is the Coulomb constant, equal to 9*10^9 Nm^2/C^2

Now, we are told that the electrostatic force after the wire is equal to 0.0443 N:

F_e_f = k \frac{q_1_fq_2_f}{r^2} = k\frac{\frac{q_1_o+q_2_o}{2}\frac{q_1_o+q_2_o}{2}}{r^2} = k\frac{(q_1_o+q_2_o)^2}{4r^2}  \\(q_1_o+q_2_o) = \sqrt{\frac{F_e_f*4r^2}{k}} = \sqrt{\frac{0.0443N *4(0.641m)^2}{9*10^9Nm^2/C^2} } = 2.844 *10^{-6}C \\ q_1_o = 2.844*10^{-6}C - q_2_o

Originally, the force is negative because it was an attraction force, therefore, its direction was opposite to the direction of the repulsive force after the wire:

F_e_o = k\frac{q_1_oq_2_o}{r^2}\\ q_1_oq_2_o = \frac{F_e_o*r^2}{k} = \frac{-0.121N(0.641m)^2}{9*10^9Nm^2/C^2} = -5.524*10^{-12}

(2.844*10^{-6}C - q_2_o)q_2_o = -5.524*10^{-12}\\0 = q_2_o^2 - 2.844*10^{-6}q_2_o - 5.524*10^{-12}

Solving the quadratic equation:

q_2_o = 4.17*10^{-6}C | -1.325 * 10^{-6}C

for this values q_1 wil be:

q_1_o =  -1.325 *10^{-6}C | 4.17*10^{-6}C

So as you can see, the negative charge will always be -1.325 μC and the positive 4.17μC

5 0
3 years ago
Other questions:
  • a teacher pushed a 10-kg desk across a floor for a distance of 5 m she exerted a horizontal force of 20 N how much work is done
    15·2 answers
  • A speaker fixed to a moving platform moves toward a wall, emitting a steady sound with a frequency of 205 Hz. A person on the pl
    5·1 answer
  • Characteristics of abuse of Narcotics include ______.
    9·1 answer
  • A spring with a spring constant of 100 N/m is relaxed at the beginning. The spring is then compressed by 0.1 m. An object of 0.0
    9·1 answer
  • A race car travels a circular track at an average rate of 135 mi/hr. The radius of the track is 0.450 miles. What is the centrip
    7·2 answers
  • A ball is thrown from 1 m above the ground. The initial velocity is 20 m/s at an angle of 40 degrees above the horizontal. What
    14·1 answer
  • What frequency will you hear if a truck is driving toward you at 20 m/s sounding a horn of frequency 300 Hz. Assume the speed of
    7·1 answer
  • A kΩ resistor is connected to an AC voltage source with an rms voltage of V. (a) What is the maximum potential difference across
    14·1 answer
  • Calculate the height from from which a body is released from rest if its velocity just before hitting the ground is30m\s
    13·1 answer
  • List 10 uses of metals​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!