Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
The answer would be flood basalt. This is the outcome
of a huge volcanic eruption or sequence of eruptions that covers large expanses
of land or the ocean floor with basalt lava. The development and
effects of a flood basalt hinge on a variety of factors, like latitude, continental
configuration, rate, volume, period of eruption, the preexisting climate
state, style and location, and the biota flexibility to alteration.
the answer is true because i think its true not 100 percent sure
Answer:
The horizontal distance traveled by the projectile is 60 m
Explanation:
Given;
initial horizontal velocity of the projectile, Vₓ = 30 m/s
time of the motion of the projectile, t = 2 s
The horizontal distance traveled by the projectile is given by the range of the projection;
X = Vₓt
X = 30 x 2
X = 60 m
Therefore, the horizontal distance traveled by the projectile is 60 m
Therefoe