1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
2 years ago
9

Why do you think fixed boundaries ""flip"" waves and loose boundaries do not?

Physics
1 answer:
Vinil7 [7]2 years ago
5 0

Answer:

When the obstacle is fixed, the law of action and reaction, makes the reflected wave is inverted.

When the obstacle is mobile, he mobile point, it moves in the direction of the wave, therefore there is no inversion of it.

Explanation:

Waves when they reach an obstacle behave like a shock, therefore if we use the conservation of momentum the wave must reverse its speed, this explains that the speed changes sign, the wave is reflected.

When the obstacle is fixed, the wave when it reaches the obstacle exerts a force on the point, by the law of action and reaction the point exerts on the wave a force of equal magnitude but in the opposite direction, this reaction force which makes the reflected wave is inverted.

When the obstacle is mobile, this is without friction, when the wave arrives it exerts a force on the mobile point, it moves in the direction of the wave, reaching the maximum amplitude of the incident wave, when it is reflected the point begins to go down along with the wave, therefore there is no inversion of it.

You might be interested in
The earth has a net electric charge that causes a field at points near its surface equal to 150 N/C and directed in toward the c
Bezzdna [24]

Answer:

a) The magnitude of the electric charge that a 60-kg human must have to overcome weight is 3.923 coulombs and its sign is negative.

b) The force of repulsion between two people is 13.851\times 10^{6} newtons. The use of the earth's electric field a feasible means of flight is not feasible since electric force of repulsion would destroy human body before taking advantage of any possible flight skill.

Explanation:

a) From Second Newton's Law, we form this equation of equilibrium:

\Sigma F = F_{E}-W = 0 (Eq. 1)

Where:

F_{E} - Electrostatic force exerted on human, measured in Newton.

W - Weight of the human, measured in Newton.

If we consider that human can be represented as a particle and make use of definitions of electric field and weight, the previous equation is expanded and electric charge is cleared afterwards:

q\cdot E-m\cdot g = 0

q = \frac{m\cdot g}{E} (Eq. 2)

E - Electric field, measured in Newtons per Coloumb.

m - Mass, measured in kilograms.

g - Gravity acceleration, measured in meters per square second.

q - Electric charge, measured in Coulomb.

As electric field of the Earth is directed in toward the center of the planet, that is, in the same direction of gravity, electric field must be a negative value. If we know that m = 60\,kg, g = 9.807\,\frac{m}{s^{2}} and E = -150\,\frac{N}{C}, the charge that a 60-kg human must have to overcome weight is:

q = \frac{(60\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}{-150\,\frac{N}{C} }

q = -3.923\,C

The magnitude of the electric charge that a 60-kg human must have to overcome weight is 3.923 coulombs and its sign is negative.

b) The electric force of repulsion between two people with the same charge calculated in part (a) is determined by Coulomb's Law, whose definition we proceed to use:

F = \kappa \cdot \frac{q^{2}}{r^{2}} (Eq. 3)

Where:

\kappa - Electrostatic constant, measured in Newton-square meter per square Coulomb.

q - Electric charge, measured in Coulomb.

r - Distance between two people, measured in meters.

If we know that \kappa = 9\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, q = -3.923\,C and r = 100\,m, then the force of repulsion between two people is:

F = \left(9\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot \left[\frac{(-3.923\,C)^{2}}{(100\,m)^{2}} \right]

F = 13.851\times 10^{6}\,N

The force of repulsion between two people is 13.851\times 10^{6} newtons. The use of the earth's electric field a feasible means of flight is not feasible since electric force of repulsion would destroy human body before taking advantage of any possible flight skill.

5 0
3 years ago
Facts about river deltas
ivolga24 [154]
Deltas are complex depositional landforms that develop at the mouths of rivers. They are composed of sediment that is deposited as a river enters a standing body of water and loses forward momentum. Famous deltas include the Mississippi delta in Louisiana and the Nile delta in Egypt.

7 0
3 years ago
This is physics 11th grade and a homework question I don’t understand how to do this or what the question is asking me
Alexxx [7]

a) Frequency is the number of complete oscillations per second. Looking at the graph, there are 9 complete oscillations in 5 seconds. Thus,

Frequency = 9/5 = 1.8 oscillations per second

Frequency = 1.8 Hz

Period = 1/frequency = 1/1.8

Period = 0.056 s

b) When we differenctiate displacement with respect to time, the result is velocity.

Recall, period = 1/f = 5/9 cycles

1/4 cycle behind = 1/4 x 5/9 = 5/36

It is delayed with 5/36 sec with respect to displacement.

5/36 sec = 0.139 sec

Acceleration = first derivative of velocity = second derivative of displacement = 1/4 cycle behind velocity = 1/2 cycle behind displacement =

5/36 = 0.139 sec delayed with respect to velocity

= 5/18 = 0.2777 secs delayed with respect to displacement

Thus, the number of seconds out of phase with the displacements is 0.278 seconds

c) The formula for calculating the period of an ideal pendulum anywhere is

T = 2π√length/local gravity). We would calculate the local gravity.

From the information given,

length = 0.2

T = P = 5/9

Thus,

5/9 = 2π√0.2/local gravity)

(5/9)/2π = √0.2/local gravity

Square both sides. It becomes

[(5/9)/2π]^2 = 0.2/local gravity

local gravity = 0.2/[(5/9)/2π]^2

local gravity = 25.56 m/s^2

Thus,

acceleration due to gravity = 25.56 m/s^2

Recall, earth's gravity = 9.8 m/s^2

number of g forces = 25.56/9.8

number of g forces = 2.61

6 0
1 year ago
A recent home energy bill indicates that a household used 475475 kWh (kilowatt‑hour) of electrical energy and 135135 therms for
faltersainse [42]

Answer:

Explanation:

Given that,.

A house hold power consumption is

475 KWh

Gas used is

135 thermal gas for month

Given that, 1 thermal = 29.3 KWh

Then,

135 thermal = 135 × 29.3 = 3955.5 KWh

So, total power used is

P = 475 + 3955.5

P =4430.5 KWh

Since 1 hr = 3600 seconds

So, the energy consumed for 1hr is

1KW = 1000W

P = energy / time

Energy = Power × time

E = 4430.5 KWhr × 1000W / KW × 3600s / hr

E = 1.595 × 10^10 J

So, using Albert Einstein relativity equation

E = mc²

m = E / c²

c is speed of light = 3 × 10^8 m/s

m = 1.595 × 10^10 / (3 × 10^8)²

m = 1.77 × 10^-7 kg

Then,

1 kg = 10^6 mg

m = 1.77 × 10^-7 kg × 10^6 mg / kg

m = 0.177mg

m ≈ 0.18 mg

5 0
3 years ago
Plz help >:
svlad2 [7]

Answer:

10m

Explanation:

The object distance and image distance is the same from the mirror. so the image is 5m behind the mirror.

5+5=10

5 0
2 years ago
Other questions:
  • A student is studying the potential energy change of a 50 kg object raised 110 km above Earth's surface. What will be the percen
    11·1 answer
  • An organism that breaks down other living things when they die
    14·1 answer
  • I drop a penny from the top of the tower at the front of Fort Collins High School and it takes 1.85 seconds to hit the ground. C
    7·1 answer
  • Which cell process occurs only in organisms that
    7·1 answer
  • Determine the frequency of a sound wave if it has a speed of 350 m/s and a wavelength of 3.80 m.
    9·1 answer
  • What is the momentum of a kid that is 23.3 kg and is running 2.1 m/s
    6·1 answer
  • The electromagnetic spectrum is composed of many colors that possess different wavelengths. Which color possesses the shortest?
    7·1 answer
  • What is the formula for calculating the efficiency of a heat engine? Answers:
    9·1 answer
  • A moving sidewalk 95 m in length carries passengers at a speed of 0.53 m/s. One passenger has a normal walking speed of 1.24 m/s
    11·1 answer
  • Should the size of the test charge compare to the amount of charge that produces the field
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!