Answer:
Length
inches
Width
inches
Step-by-step explanation:
Let
= length of rectangle,
= width of rectangle
Given the area and the perimeter of the rectangle, we can write:

So:



Now, we can use substitution to find the value of
:



(Quadratic equation)
∴ 
We can use substitution again to find the value of 



∵ Length usually refers to the longer side of a rectangle, ∴ length
inches and width
inches.
Hope this helps :)
(- 2, - 3) is a solution to the given system of equations.
Answer: Option D
<u>Step-by-step explanation:</u>
Given equation are not presented in proper format. So, let assume the given system of are as below,
2 x - y = -1
2 x -4 y = 8
Now, subtract the second equation from the first, we get
(2 x - y) -(2 x - 4 y) = -1 -8
3 y = -9
y = -3 (obtained this when divide by 3)
Substituting y = - 3 into the first equation, we get
2 x - (-3) = - 1
2 x = - 1 + 3
x = - 2 (obtained when divide by 2)
Now, the answer is (x, y) = (- 2, - 3)
d<em>y</em>/d<em>x</em> = 4 + √(<em>y</em> - 4<em>x</em> + 6)
Make a substitution of <em>v(x)</em> = <em>y(x)</em> - 4<em>x</em> + 6, so that d<em>v</em>/d<em>x</em> = d<em>y</em>/d<em>x</em> - 4. Then the DE becomes
d<em>v</em>/d<em>x</em> + 4 = 4 + √<em>v</em>
d<em>v</em>/d<em>x</em> = √<em>v</em>
which is separable as
d<em>v</em>/√<em>v</em> = d<em>x</em>
Integrating both sides gives
2√<em>v</em> = <em>x</em> + <em>C</em>
Get the solution back in terms of <em>y</em> :
2√(<em>y</em> - 4<em>x</em> + 6) = <em>x</em> + <em>C</em>
You can go on to solve for <em>y</em> explicitly if you want.
√(<em>y</em> - 4<em>x</em> + 6) = <em>x</em>/2 + <em>C</em>
<em>y</em> - 4<em>x</em> + 6 = (<em>x</em>/2 + <em>C </em>)²
<em>y</em> = 4<em>x</em> - 6 + (<em>x</em>/2 + <em>C </em>)²