The angular acceleration of the blade when it's switched off is (-6800 rev/min) divided by (2.8 sec) = -2,428.6 rev/(min-sec) = -40.5 rev/sec^2 .
Correct question:
A solenoid of length 0.35 m and diameter 0.040 m carries a current of 5.0 A through its windings. If the magnetic field in the center of the solenoid is 2.8 x 10⁻² T, what is the number of turns per meter for this solenoid?
Answer:
the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Explanation:
Given;
length of solenoid, L= 0.35 m
diameter of the solenoid, d = 0.04 m
current through the solenoid, I = 5.0 A
magnetic field in the center of the solenoid, 2.8 x 10⁻² T
The number of turns per meter for the solenoid is calculated as follows;

Therefore, the number of turns per meter for the solenoid is 4.5 x 10³ turns/m.
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Water expands when it freezes (that's why you should never put closed, fully filled water bottles in the freezer !)
What substances? Depends on their density, the lower density floats on top. For example, oil floats on top of water