The formula for this problem that we will be using is:
F * cos α = m * g * μs where:F = 800m = 87g = 9.8
cos α = m*g*μs/F= 87*9.8*0.55/800= 0.59 So solving the alpha, find the arccos above.
α = arccos 0.59 = 54 ° is the largest value of alpha
The reasoning which is in use when large, angular rocks are interpreted to have originated from the outcrop at the top of the hill is; Fossil succession
<h3>Fossil succession of rocks</h3>
The principle of fossil succession in characterized by the fact that fossil entities succeed one another upward through rock layers in a definite and determinable order.
On this note, any time period can be dated by its fossil content.
Read more on fossil succession;
brainly.com/question/2631497
The correct answer is:
<span>B.) At terminal velocity there is no net force
In fact, when the parachutist reaches the terminal velocity, his velocity does not change any more. It means that the acceleration acting on the parachutist is zero, and for Newton's second law, this means the net force acting on him is zero:
</span>

<span>because the acceleration is zero: a=0.
This also means that the two relevant forces acting on the parachutist (gravity, downward, and air resistance, upward) are balanced to produce a net force equal to zero.</span>