Answer:
FALSE
Explanation:
Velocity = speed with direction.
Think of speed and direction like rockets and missiles. Rockets are not smart. Missiles are smart. Rockets go in one direction. Missiles can track their targets, they have a specific destination, a specific direction.
Velocity is often used in physics, because its almost useless to know how fast an object is going if you don't know which direction it is going.
Think of it like this. If the Weather man told you a hurricane was traveling at 30 miles an hour, but didn't tell you which direction it was going, you would have no idea where to run, or if it was going to hit you at all. However, if he told you it was going 30 miles an hour to the North, and you were West of it, you would be fine, and wouldn't have to worry.
Answer:
29.412m/s
Explanation:
where F= force, m= mass, and a=acceleration
we also know that,
a = Δv / t where Δv = change in velocity and t = time
thus F = m ( Δv / t)

Δv
29.412m/s=Δv
Yo sup??
The weight vector is usually drawn vertically downwards from the centre of the body.
It can be respectively resolved as well.
Hope this helps
Answer:
The correct option is D
Explanation:
This question is incomplete because of the absence of the setup which as been attached below. The setup shows/determines/tests the friction of wood (which is a block material), since Jerry wants to test the friction between different types of materials, he will have to replace the wooden block with another type of block material of choice so as to determine the friction of that also.
In order to have a comprehensive experiment, Jerry can use 4-5 different types of block material in the course of the experiment.
Answer:
vector quantities are resolved into their component form (along the x and y-axis) before adding them. Let us assume that two vectors are
→
a
=
x
1
^
i
+
y
1
^
j
and
→
b
=
x
2
^
i
+
y
2
^
j
, we can find the sum of two vectors as follows.
→
a
+
→
b
=
x
1
^
i
+
y
1
^
j
+
x
2
^
i
+
y
2
^
j
=
(
x
1
+
x
2
)
^
i
+
(
y
1
+
y
2
)
^
j
The direction of the sum of the vectors (with positive x-axis) is,
θ
=
tan
−
1
(
y
1
+
y
2
x
1
+
x
2
)