1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
5

Let y(t) be the solution to y˙=3te−y satisfying y(0)=3 . (a) Use Euler's Method with time step h=0.2 to approximate y(0.2),y(0.4

),...,y(1.0) . k tk yk 0 0 3 1 0.2 equation editor Equation Editor 2 0.4 equation editor Equation Editor 3 0.6 equation editor Equation Editor 4 0.8 equation editor Equation Editor 5 1.0 equation editor Equation Editor (b) Use separation of variables to find y(t) exactly. y(t) = equation editor Equation Editor (c) Compute the error in the approximations to y(0.2),y(0.6) , and y(1). |y(0.2)−y1|=

Mathematics
1 answer:
OLEGan [10]3 years ago
3 0

Answer:

  • y(0.2)=3, y(0.4)=3.005974448, y(0.6)=3.017852169, y(0.8)=3.035458382, and y(1.0)=3.058523645
  • The general solution is y=\ln \left(\frac{3t^2}{2}+e^3\right)
  • The error in the approximations to y(0.2), y(0.6), and y(1):

|y(0.2)-y_{1}|=0.002982771

|y(0.6)-y_{3}|=0.008677796

|y(1)-y_{5}|=0.013499859

Step-by-step explanation:

<em>Point a:</em>

The Euler's method states that:

y_{n+1}=y_n+h \cdot f \left(t_n, y_n \right) where t_{n+1}=t_n + h

We have that h=0.2, t_{0}=0, y_{0} =3, f(t,y)=3te^{-y}

  • We need to find y(0.2) for y'=3te^{-y}, when y(0)=3, h=0.2 using the Euler's method.

So you need to:

t_{1}=t_{0}+h=0+0.2=0.2

y\left(t_{1}\right)=y\left(0.2)=y_{1}=y_{0}+h \cdot f \left(t_{0}, y_{0} \right)=3+h \cdot f \left(0, 3 \right)=

=3 + 0.2 \cdot \left(0 \right)= 3

y(0.2)=3

  • We need to find y(0.4) for y'=3te^{-y}, when y(0)=3, h=0.2 using the Euler's method.

So you need to:

t_{2}=t_{1}+h=0.2+0.2=0.4

y\left(t_{2}\right)=y\left(0.4)=y_{2}=y_{1}+h \cdot f \left(t_{1}, y_{1} \right)=3+h \cdot f \left(0.2, 3 \right)=

=3 + 0.2 \cdot \left(0.02987224102)= 3.005974448

y(0.4)=3.005974448

The Euler's Method is detailed in the following table.

<em>Point b:</em>

To find the general solution of y'=3te^{-y} you need to:

Rewrite in the form of a first order separable ODE:

e^yy'\:=3t\\e^y\cdot \frac{dy}{dt} =3t\\e^y \:dy\:=3t\:dt

Integrate each side:

\int \:e^ydy=e^y+C

\int \:3t\:dt=\frac{3t^2}{2}+C

e^y+C=\frac{3t^2}{2}+C\\e^y=\frac{3t^2}{2}+C_{1}

We know the initial condition y(0) = 3, we are going to use it to find the value of C_{1}

e^3=\frac{3\left(0\right)^2}{2}+C_1\\C_1=e^3

So we have:

e^y=\frac{3t^2}{2}+e^3

Solving for <em>y</em> we get:

\ln \left(e^y\right)=\ln \left(\frac{3t^2}{2}+e^3\right)\\y\ln \left(e\right)=\ln \left(\frac{3t^2}{2}+e^3\right)\\y=\ln \left(\frac{3t^2}{2}+e^3\right)

<em>Point c:</em>

To compute the error in the approximations y(0.2), y(0.6), and y(1) you need to:

Find the values y(0.2), y(0.6), and y(1) using y=\ln \left(\frac{3t^2}{2}+e^3\right)

y(0.2)=\ln \left(\frac{3(0.2)^2}{2}+e^3\right)=3.002982771

y(0.6)=\ln \left(\frac{3(0.6)^2}{2}+e^3\right)=3.026529965

y(1)=\ln \left(\frac{3(1)^2}{2}+e^3\right)=3.072023504

Next, where y_{1}, y_{3}, \:and \:y_{5} are from the table.

|y(0.2)-y_{1}|=|3.002982771-3|=0.002982771

|y(0.6)-y_{3}|=|3.026529965-3.017852169|=0.008677796

|y(1)-y_{5}|=|3.072023504-3.058523645|=0.013499859

You might be interested in
Write repeating decimal 0.027272727 ... as a fraction.
11111nata11111 [884]

Answer:

27/100

Step-by-step explanation:

4 0
4 years ago
Mini read a book at a constant rate. The graph of her progress is shown. Which statement is true?
Law Incorporation [45]

Answer:

C

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Is 3 x 10 to the 5th power real, imaginary, rational, or irrational?
chubhunter [2.5K]

Answer:

real

Step-by-step explanation:

300000

6 0
3 years ago
WILL MARK BRAINLIEST
rewona [7]

Answer:

70 is the answer for this question

4 0
3 years ago
What is 505/10×10 written in unit form
Amiraneli [1.4K]

The number becomes in the unit form is a 5 hundreds and 0 tens and  the 5 ones.

According to the statement

We have given that the number and the we have to write in the unit form.

So, For this purpose, we know that the

The unit form is the way to show how many of each size unit are in a number.

From the given information:

The number is a 505/10×10

Now, we have to solve this And the number becomes is

505.

And the

5 hundreds and 0 tens the 5 ones.

The unit form becomes the 5 hundreds and the 5 ones.

So, The number becomes in the unit form is a 5 hundreds and 0 tens the 5 ones.

Learn more about unit form here

brainly.com/question/2140644

#SPJ9

7 0
2 years ago
Other questions:
  • What multiplication fact Can be found by using the Arrays for 2 times 9 and 5 times 9
    11·1 answer
  • Solve and graph the absolute value inequality: |4x + 1| ≤ 5. a. number line with closed dots on −1.5 and 1 with shading going in
    10·1 answer
  • Solve the equation |t+8|=5
    8·1 answer
  • What is the number between 145.809 and 144.809?
    10·1 answer
  • jan wants to buy 3 yards of fabric at $3.58 per yard for a blouse. she also wants to buy 2 yards of a different fabric for a ski
    5·1 answer
  • How do I find the answer to this question?
    5·1 answer
  • Me ayudan por favor ??? thank youu
    13·1 answer
  • My ice chest is at -79 degrees Celsius. What would it convert into Fahrenheit
    7·1 answer
  • Find the constant rate of change for each graph
    6·1 answer
  • Randy and trey take turns cleaning offices on the weekends. it takes randy at most 4 hours to clean the offices. it takes trey a
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!