Here you have to find which each variable is, for this you start of picking one equation,
x + 2y + 6z = 4
-3x + 2y - 2 = -4
4x + 2z = 16
depending the equation you pick you multiply that by a certain number that will give you the opposite of one of the other equations,
-1(x + 2y + 6z = 4)
= -x -2y - 6z = -4
With this you add or subtract it with the equation that has the same number or variable, or both,
In this case it will be the equation,
-3x + 2y + 6z = 4
You can use this one or the third equation since both have a positive 2y which will cancel with -2y from the new equation,
-x - 2y - 6z = -4
-3x + 2y -z = -4
= -4x -7z = -8
Now you since you just eliminated the variable (y) you now have 2 variables, and the last equation has only 2 variables, meaning now you find the answer to those to equations,
-4x -7z = -8
4x + 2z = 16
= -5z = 8
Now leave the variable by itself,
z = 8/5
Now you found the variable (z), with this just substitute on one of the equations we used to find (z) so you can find (x), after that substitute those answered to on of the original equations so you can find (y)
Answer:
0.75 mg
Step-by-step explanation:
From the question given above the following data were obtained:
Original amount (N₀) = 1.5 mg
Half-life (t₁/₂) = 6 years
Time (t) = 6 years
Amount remaining (N) =.?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Half-life (t₁/₂) = 6 years
Time (t) = 6 years
Number of half-lives (n) =?
n = t / t₁/₂
n = 6/6
n = 1
Finally, we shall determine the amount of the sample remaining after 6 years (i.e 1 half-life) as follow:
Original amount (N₀) = 1.5 mg
Half-life (t₁/₂) = 6 years
Number of half-lives (n) = 1
Amount remaining (N) =.?
N = 1/2ⁿ × N₀
N = 1/2¹ × 1.5
N = 1/2 × 1.5
N = 0.5 × 1.5
N = 0.75 mg
Thus, 0.75 mg of the sample is remaining.
Answer:
A: ∠B = 55°; ∠D = 55°
Step-by-step explanation:
On Edg. 2021
Answer:
2
Step-by-step explanation:
Answer:
1. x= 8
2. x= 6
3. x= 7
4. x= -8
Code: BECI
Step-by-step explanation: