Answer:
B:x^4-8x^2-16
Step-by-step explanation:
B:
is in standard form.
Answer:
The numbers on the axis need to follow a repeating pattern
I think it's the last one coz in the graph, 50 jumps to 58 which breaks the repeating rule of 5
There are many for this ,but one sample is: 2 divided by 2is 4 X 3 which is 12.
Answer:
Just to recap, an equation has no solution when it results in an incorrect "equation".
For example:
Equation: x+3 = x+4
Subtract x: 3 = 4???
But clearly, 3 is not equal to 4, so this equation has NO SOLUTION.
Now onto our problem:
13y+2-2y = 10y+3-y
11y+2 = 9y+3
2y=1
y=1/2
9(3y+7)-2 = 3(-9y+9)
27y+61 = -27y+27
54y = -34
y = -34/54
32.1y+3.1+2.4y-8.2=34.5y-5.1
34.5-5.1=34.5y-5.1
5.1=5.1
infinite solutions
5(2.2y+3.4) = 5(y-2)+6y
11y+17 = 11y-10
17 = -10??
That's not true, so the option "5(2.2y+3.4) = 5(y-2)+6y" has no solution.
Let me know if this helps
Answer:
a) 

And we want the probability from 0 to two deviations above the mean and we got 95/2 = 47.5 %
b) 

So one deviation below the mean we have: (100-68)/2 = 16%
c) 

For this case below 2 deviation from the mean we have 2.5% and above 1 deviation from the mean we got 16% and then the percentage between -2 and 1 deviation above the mean we got: (100-16-2.5)% = 81.5%
Step-by-step explanation:
For this case we have a random variable with the following parameters:

From the empirical rule we know that within one deviation from the mean we have 68% of the values, within two deviations we have 95% and within 3 deviations we have 99.7% of the data.
We want to find the following probability:

We can find the number of deviation from the mean with the z score formula:

And replacing we got


And we want the probability from 0 to two deviations above the mean and we got 95/2 = 47.5 %
For the second case:


So one deviation below the mean we have: (100-68)/2 = 16%
For the third case:

And replacing we got:


For this case below 2 deviation from the mean we have 2.5% and above 1 deviation from the mean we got 16% and then the percentage between -2 and 1 deviation above the mean we got: (100-16-2.5)% = 81.5%