1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
joja [24]
2 years ago
10

Solve using addition method 3x-3y+2z=7 3x+y-3z=-5 7x-y-2z=0

Mathematics
1 answer:
frozen [14]2 years ago
6 0
3x - 3y + 2z = 7  
3x + 1y - 3z = -5  ⇒ 6x - 2y - 1z = 2 ⇒ 42x - 14y -   7z = 14
7x  - 1y - 2z = 0   ⇒ 7x - 1y - 2z = 0 ⇒ <u>42x -   6y - 12z = 0    </u>
                                                                      -20y - 19z = 14
                                                            -20y + 20y - 19z = 14 + 20y
                            <u />                                                   <u>-19z</u> = <u>14 + 20y</u>
                                                                                -19         -19
                                                                                    z = -14/19 - 1 1/19y
                                         3x - 3y + 2(-14/19 - 1 1/19y) = 7
                                              3x - 3y - 1 9/19 - 2 2/19y = 7
                                                     3x - 5 2/19y - 1 9/19 = 7
                                                     <u>      +1 9/19  +1 9/19        </u>
                                                                   3x - 5 2/19y = 8 9/19
                                                            3x - 3x - 5 2/19y = 8 9/19 - 3x
                             <u />                                            <u>-5 2/19y</u> = <u>8 9/19 - 3x</u> 
                                                                         -5 2/19        -5 2/19
                                                                                     y = -1 64/97 + 57/97x
             3x - 3(-1 64/97 + 57/97x) + 2(-14/19 - 1 1/19y) = 7
                    3x + 4 95/97 + 1 74/97x - 1 9/19 - 2 2/19y = 7
                               4 74/97x - 2 2/19y + 3.5056972328 = 7
                               <u>                                -3.5056972328   -3.5056972328</u>
                                                          4 74/97x - 2 2/19y = 3.494302767
                                          4 74/97x + 2 2/19y - 2 2/19y = 3.494302767 + 22/19y
                                                                          <u>4 74/97x</u> = <u>3.494302767 + 2 2/19</u>
                                                                           4 74/97               4 74/97
                                                               x = 0.7336523126 + 0.4420141262y
3(0.733652316 + 0.4420141262y) - 3(-1 64/97 + 57/97x) + 2(-14/19 - 1 1/19y)=7
          2.200956948 + 1.326042379y + 4 95/97 - 1 74/97x - 1 9/19 - 2 2/19y = 7                             -1 74/97x - 0.7792207789y + 5.706654181 = 7
                         <u>                                               -5.706654181    -5.70665418</u>
                                                     -1 74/97x - 0.7792207789y = 1.293345820
(x, y, z) = (0.733652316 + 0.4420141262, -1 64/97 + 57/97x, -14/19 - 1 1/19y)

You might be interested in
-7x + 6= 27 what does x stand for ?
ivolga24 [154]

-7x + 6 = 27

-7x = 21 (Subtract 6 from both sides)

x = -3 (Divide -7 from both sides)

3 0
3 years ago
In 2016, the top 1 percent of taxpayers accounted for more income taxes paid than the bottom 90 percent combined. The top 1 perc
qaws [65]

Answer:

$464Billion

Step-by-step explanation:

If 37.3%=$538B

32.2%=?

By \ Cross \ Multiplying:-\\32.2\%=>\frac{32.2\%*538}{40\%}\\=464.440

32.2% is roughly $464Billion in taxes

3 0
3 years ago
Can you please help me with this problem
vagabundo [1.1K]
\bf \begin{cases}&#10;\textit{area of a circle}=\pi r^2&#10;\\ \quad \\&#10;circumference=2\pi r&#10;\end{cases}&#10;\\ \quad \\&#10;&#10;12.56=\pi r^2\implies \cfrac{12.56}{\pi }=r^2\implies \sqrt{\cfrac{12.56}{\pi }}=\boxed{r}&#10;\\ \quad \\&#10;thus&#10;\\ \quad \\&#10;circumference=2\pi \boxed{r}\implies 2\pi \boxed{\sqrt{\cfrac{12.56}{\pi }}}
8 0
3 years ago
Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true
IgorLugansk [536]

Answer:

(a) 95% confidence interval for the true average porosity of a certain seam is [4.52 , 5.18].

(b) 98% confidence interval for the true average porosity of a another seam is [4.12 , 4.99].

Step-by-step explanation:

We are given that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation 0.75.

(a) Also, the average porosity for 20 specimens from the seam was 4.85.

Firstly, the pivotal quantity for 95% confidence interval for the population mean is given by;

                      P.Q. =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \bar X = sample average porosity = 4.85

            \sigma = population standard deviation = 0.75

            n = sample of specimens = 20

            \mu = true average porosity

<em>Here for constructing 95% confidence interval we have used One-sample z test statistics as we know about population standard deviation.</em>

<u>So, 95% confidence interval for the true mean, </u>\mu<u> is ;</u>

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                     of significance are -1.96 & 1.96}  

P(-1.96 < \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < 1.96) = 0.95

P( -1.96 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X-\mu} < 1.96 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.95

P( \bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for</u> \mu = [ \bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } } ]

                                            = [ 4.85-1.96 \times {\frac{0.75}{\sqrt{20} } } , 4.85+1.96 \times {\frac{0.75}{\sqrt{20} } } ]

                                            = [4.52 , 5.18]

Therefore, 95% confidence interval for the true average porosity of a certain seam is [4.52 , 5.18].

(b) Now, there is another seam based on 16 specimens with a sample average porosity of 4.56.

The pivotal quantity for 98% confidence interval for the population mean is given by;

                      P.Q. =  \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \bar X = sample average porosity = 4.56

            \sigma = population standard deviation = 0.75

            n = sample of specimens = 16

            \mu = true average porosity

<em>Here for constructing 98% confidence interval we have used One-sample z test statistics as we know about population standard deviation.</em>

<u>So, 98% confidence interval for the true mean, </u>\mu<u> is ;</u>

P(-2.3263 < N(0,1) < 2.3263) = 0.98  {As the critical value of z at 1% level

                                                   of significance are -2.3263 & 2.3263}  

P(-2.3263 < \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } < 2.3263) = 0.98

P( -2.3263 \times {\frac{\sigma}{\sqrt{n} } } < {\bar X-\mu} <  2.3263 ) = 0.98

P( \bar X-2.3263 \times {\frac{\sigma}{\sqrt{n} } } < \mu < \bar X+2.3263 \times {\frac{\sigma}{\sqrt{n} } } ) = 0.98

<u>98% confidence interval for</u> \mu = [ \bar X-2.3263 \times {\frac{\sigma}{\sqrt{n} } } , \bar X+2.3263 \times {\frac{\sigma}{\sqrt{n} } } ]

                                            = [ 4.56-2.3263 \times {\frac{0.75}{\sqrt{16} } } , 4.56+2.3263 \times {\frac{0.75}{\sqrt{16} } } ]

                                            = [4.12 , 4.99]

Therefore, 98% confidence interval for the true average porosity of a another seam is [4.12 , 4.99].

7 0
3 years ago
Simplify the following using PEMDAS: [3−(3⋅3)+33÷3] × 4⋅5/10−2⋅3
kompoz [17]

Answer: 34

Step-by-step explanation:

<u>Given expression</u>

[3 - (3 · 3) + 33 ÷ 3] × 4 · 5 / 10 - 2 · 3

<u>Simplify by parentheses in the bracket</u>

=[3 - 9 + 33 ÷ 3] × 4 · 5 / 10 - 2 · 3

<u>Simplify by multiplication</u>

=[3 - 9 + 33 ÷ 3] × 20 / 10 - 6

<u>Simplify by division</u>

=[3 - 9 + 11] × 10 - 6

<u>Simplify by bracket (addition/subtraction)</u>

=[-6 + 11] × 10 - 6

=[4] × 10 - 6

<u>Simplify by multiplication</u>

=40 - 6

<u>Simplify by subtraction</u>

=\boxed{34}

Hope this helps!! :)

Please let me know if you have any questions

8 0
2 years ago
Other questions:
  • Nia wants the total weight of her luggage to be no more than 50 kilograms. She has
    12·2 answers
  • The measure of an angle is 40°. What is the measure of its supplementary angle?
    15·2 answers
  • For which system of equations is (5, 3) the solution?
    14·1 answer
  • The function f shown in the graph is an even function. The graph has been hidden for x ≥ 0. Complete the following sentences.
    7·2 answers
  • Which expression is equivalent to 1/4(8-6x+12)
    9·2 answers
  • Convert 2.5 lb to oz​
    11·1 answer
  • Help me please! I’m begging
    9·1 answer
  • Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the
    13·1 answer
  • A medical insurance company offers two​ prescription-drug insurance plans. With plan​ 1, James would pay the first ​$150 of his
    15·1 answer
  • -3/2t=-9 please help. its for a test
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!