<em>what</em><em> </em><em>are</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em><em>that</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>be</em><em> </em><em>defined</em><em> </em><em>?</em>
Answer:
True.
Explanation:
The Hund's Rule states that all orbitals must be singled occupied before any orbital is doubly occupied, and all the electrons at the singly occupied orbitals have the same spin number. By doing that, the electrons filled the lowest energy orbitals first.
The 2p level has 3 orbitals: 2px, 2py, and 2pz. So, when filling it, first put an electron in the 2px, then in the 2py, then and the 2pz (all with the same spin). After that, the remains electrons can be paired up.
Answer:
V₂ = 8.36 L
Explanation:
Given data:
Initial volume of gas = 5.00 L
Initial temperature = -50.0°C (-50 + 273 = 223 k)
Final temperature = 100°C (100+273 = 373 k)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 5.00 L × 373 K / 223 K
V₂ = 1865 L.K / 223 K
V₂ = 8.36 L
Answer:
5727 years or 5730 (rounded to match 3 sig figs) whichever one your teacher prefers
Explanation:
First Order decay has a half life formula of Half Life = Ln (2) / k = 0.693/K
Half-life = 0.693/k = 0.693/1.21 x10-4 = 5727 years or 5730 (rounded to match 3 sig figs)
This should be correct because if you google the half-life of 14 C it is ~ 5700 years