Neutrons the way this question is setup the atom would not be able to be neutral
It is a substance that can be dissolved into others
Answer:
First confirm the reaction is balanced:
C3H8 + 5O2 --> 3CO2 + 4H20 (3 cabon - check; 8 hydrogen - check; 10 oxygen - check).
a) In the equation there is a 5:1 ratio between propane and oxygen. We also know that number of mole is proportional to pressure and volume. Since pressure is constant (STP) then the volume of O2 is 7.2 * 5 = 36 litres.
b) For a near ideal gas that PV = nRT (combined gas law). So for 7.2 litres propane we find n(propane) = 101.3 * 7.2/8.314*298 ~ 0.29 mole (using metric units throughout for simplicity).
There is a 1:3 ratio between propane and CO2. Therefore 3 * 0.29 = 0.87 mole of CO2 is produced.
MW(CO2) ~ 44 g/mol. Therefore m(CO2) = 44 * 0.87 ~ 38.3 g
c) We know we need more oxygen than propane (due to the 1:5 ratio) so oxygen is the limiting reagent. Again Volume is proportional to number of mole and we see there is a 5:4 ratio between oxygen and water. Therefore the volume of water vapour produced will be (4/5) * 15 = 12 litres.
The other questions use the same technique and will give you some much needed practice.
Explanation:
The answer would be hypotheis since its an theory that isnt proven yet which would involve a scientist to expertiment to make the hypothesis true or valid
Answer:
c = 0.528 J/g.°C
Explanation:
Given data:
Mass of titanium = 43.56 g
Heat absorbed = 0.476 KJ = 476 j
Initial temperature = 20.5°C
Final temperature = 41.2°C
Specific heat capacity = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 41.2°C - 20.5°C
ΔT = 20.7 °C
476 J = 43.56 g × c × 20.7 °C
476 J = 901.692 g.°C × c
c = 476 J / 901.692 g.°C
c = 0.528 J/g.°C