31 degrees, 31 degrees, 118 degrees
Step-by-step explanation:
Step 1 :
Let x be the measure of 2 angles of the given isosceles triangle with same measure
Let y be the measure of 3rd angle
So we have x + x + y = 180
Step 2 :
Given that the measure of 3rd angle of triangle is 25° more than three times the measure of either of the other two angles
So we have , y = 3 x + 25
Step 3:
Substituting for y in the first equation we have,
x + x + 3 x + 25 = 180
=> 5 x + 25 = 180
=> 5 x = 180-25 = 155
=> x = 155/5 = 31
Hence the 2 angles of the triangle are 31 degrees.
Step 4:
we have y = 3 x + 25
=> y = 3 * 31 + 25 = 118
Hence the 3rd angle of given triangle is 118 degrees
Answer:
D
Step-by-step explanation:
Data without variability means data that doesn't change.
Whatever you do, the number of games the Texans won in the 2014-15 season won't change.
Answer:
a non repeating decimal
Step-by-step explanation:
answer from alexa device
The <em>quadratic</em> equation 3 · x² + 7 · x - 2 = 0 has a <em>positive</em> discriminant. Thus, the expression has two <em>distinct real</em> roots (<em>real</em> and <em>irrational</em> roots).
<h3>How to determine the characteristics of the roots of a quadratic equation by discriminant</h3>
Herein we have a <em>quadratic</em> equation of the form a · x² + b · x + c = 0, whose discriminant is:
d = b² - 4 · a · c (1)
There are three possibilities:
- d < 0 - <em>conjugated complex</em> roots.
- d = 0 - <em>equal real</em> roots (real and rational root).
- d > 0 - <em>different real</em> roots (real and irrational root).
If we know that a = 3, b = 7 and c = - 2, then the discriminant is:
d = 7² - 4 · (3) · (- 2)
d = 49 + 24
d = 73
The <em>quadratic</em> equation 3 · x² + 7 · x - 2 = 0 has a <em>positive</em> discriminant. Thus, the expression has two <em>distinct real</em> roots (<em>real</em> and <em>irrational</em> roots).
To learn more on quadratic equations: brainly.com/question/2263981
#SPJ1
Answer:
y = 5/4x + 12
Step-by-step explanation:
5x - 4y = 4
-4y = -5x + 4
y = (-5x + 4)/-4
y = 5/4x - 1
Parallel Slope ---> m = 5/4
(-8, 2)
y = mx + b
2 = 5/4(-8) + b
2 = 5 * -2 + b
2 = -10 + b
12 = b
b = 12
y = 5/4x + 12 <---- This is the answer
Hope this helps!