Okay so where's the math question(s)?
The sum of the first 20 terms of an arithmetic sequence with the 18th term of 8.1 and a common difference of 0.25 is 124.5
Given,
18th term of an arithmetic sequence = 8.1
Common difference = d = 0.25.
<h3>What is an arithmetic sequence?</h3>
The sequence in which the difference between the consecutive term is constant.
The nth term is denoted by:
a_n = a + ( n - 1 ) d
The sum of an arithmetic sequence:
S_n = n/2 [ 2a + ( n - 1 ) d ]
Find the 18th term of the sequence.
18th term = 8.1
d = 0.25
8.1 = a + ( 18 - 1 ) 0.25
8.1 = a + 17 x 0.25
8.1 = a + 4.25
a = 8.1 - 4.25
a = 3.85
Find the sum of 20 terms.
S_20 = 20 / 2 [ 2 x 3.85 + ( 20 - 1 ) 0.25 ]
= 10 [ 7.7 + 19 x 0.25 ]
= 10 [ 7.7 + 4.75 ]
= 10 x 12.45
= 124.5
Thus the sum of the first 20 terms of an arithmetic sequence with the 18th term of 8.1 and a common difference of 0.25 is 124.5
Learn more about arithmetic sequence here:
brainly.com/question/25749583
#SPJ1
Answer:
n - (-6) < 9
n < 3
Step-by-step explanation:
When setting up an inequality, using the key words from the problem will help. The word 'difference' would indicate subtraction and 'less than' would be the '<' inequality sign. Since the expression is 'the difference of a number and -6', we write:
n - (-6) < 9
Whenever we subtract a negative number, we change both signs to positive:
n + 6 < 9
Using inverse operations to solve: n + 6 - 6 < 9 - 6
n < 3