1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
3 years ago
11

Solve the proportion below.

Mathematics
2 answers:
melamori03 [73]3 years ago
8 0
Cross multiply

19(x) = 30(9.5)

Simplify

19x = 285

Divide 19 from both sides

19x/19 = 285/19

x = 285/19

x = 15

B. 15 is your answer

hope this helps
skelet666 [1.2K]3 years ago
8 0

19x = 30 * 9.5

x    = 30 * 9.5 / 19

=  30 /2

= 15 answer
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Solve the differential equation by separation of variables<br> x(dy/dx)=4y
weeeeeb [17]
<span>get all your x one on side and y on the opposing side so we have
xdy=4ydx
dy/y=4dx/x
</span><span>integrate both sides
</span><span>lny=4lnx+C
</span><span> y=e^(4lnx+C)
</span><span>The answer is y=cx^4 </span>

3 0
3 years ago
Suppose you are the president of the student government. You wish to conduct a survey to determine the student​ body's opinion r
patriot [66]

The best way to five students from a list of 626 students available such that it exhibits a random process is to List each name on a separate piece of paper; place them all in a hat, and pick five.

The selection process which should be undertaken by the student government, should be one which is inclusive and representative. Hence, the five students to be selected which makes up the sample of the total student should be chosen at random and transparently.

Hence, listing the names of each student on a Seperate piece of paper, placing it in a hat and making 5 selections showcase randomness and transparency, hence, it should be the adopted selection process.

Learn more : brainly.com/question/12719645?referrer=searchResults

5 0
3 years ago
Select the correct answer.
Ierofanga [76]

Answer:

19.2x+96 units

Step-by-step explanation:

The perimeter of a square is 4 times the length of one side.

The length of the sides of a square is given by the expression 4.8x+24

To find the perimeter, we multiply this expression by 4.

Perimeter=4(4.8x+24)

We expand to obtain:

Perimeter=4*4.8x+4*24

This simplifies to:

Perimeter=19.2x+96

7 0
3 years ago
Dose Congruent Mean Having The Same Measure​
Julli [10]

So Congruent. Two figures are congruent if they have the same shape and size. Two angles are congruent if they have the same measure. Two figures are similar if they have the same shape but not necessarily the same size.

I hope that help u:)

4 0
3 years ago
Other questions:
  • Which equation can be used to find the answer? an aquarium worker removed 78 fish from a tank. there were still 186 fish left in
    7·2 answers
  • Ther are 29 students in Mrs. Hernandez’s homeroom. One student will be randomly selected to act as a representative on the stude
    9·1 answer
  • If a 5 minute shower used 12 gallons of water how many gallons of water would a one minute Shower use
    8·1 answer
  • How do I solve this problem?
    13·1 answer
  • BRAINLIESTTT ASAP! PLEASE HELP ME :)
    11·2 answers
  • What is the horizontal distance from the plane’s starting position to its finishing position???? I will mark brainliest
    8·1 answer
  • Given f(x) = –2x + 2, find f(6).
    12·2 answers
  • Does -45 belong in natural numbers or whole numbers (giving brainliest)
    13·1 answer
  • A meteor crater is 4000 feet in diameter. approximate the distance around the crater.
    9·1 answer
  • Translate the phrase into an algebraic explanation. the quotient of x and 5​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!