Answer:
Step-by-step explanation:
36. (4,1)
x-axis(4,-1)
y-axis(-4,1)
37.(-2,3)
x-axis(2,-3)
y-axis(-2,3)
38.(2,-5)
x-axis(-2,5)
y-axis(2,-5)
39.(-3.5, -2.5)
x-axis(-3.5,2.5)
y-axis(3.5,-2.5)
Please correct me I am wrong
Here is the y-axis formula (-x,y)
Here is the x-axis formula(x,-y)
Answer:
5.7* 10 to the power of 4
Assume 0 < <em>x</em>/2 < <em>π</em>/2. Then
tan²(<em>x</em>/2) + 1 = sec²(<em>x</em>/2) ===> sec(<em>x</em>/2) = √(1 - tan²(<em>x</em>/2))
===> cos(<em>x</em>/2) = 1/√(1 - tan²(<em>x</em>/2))
===> cos(<em>x</em>/2) = 1/√(1 - <em>t</em> ²)
We also know that
sin²(<em>x</em>/2) + cos²(<em>x</em>/2) = 1 ===> sin(<em>x</em>/2) = √(1 - cos²(<em>x</em>/2))
Recall the double angle identities:
cos(<em>x</em>) = 2 cos²(<em>x</em>/2) - 1
sin(<em>x</em>) = 2 sin(<em>x</em>/2) cos(<em>x</em>/2)
Then
cos(<em>x</em>) = 2/(1 - <em>t</em> ²) - 1 = (1 + <em>t</em> ²)/(1 - <em>t</em> ²)
sin(<em>x</em>) = 2 √(1 - 1/(1 - <em>t</em> ²)) / √(1 - <em>t</em> ²) = 2<em>t</em>/(1 - <em>t</em> ²)
Answer:
A= (0,0) and B = (6,3)
We can find the length AB with the following formula:

And replacing we got:

So then the length AB would be 
Step-by-step explanation:
For this case we have the following two points:
A= (0,0) and B = (6,3)
We can find the length AB with the following formula:

And replacing we got:

So then the length AB would be 
Answer:

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em><em>.</em>