If an element contains 8 electrons, then there would be 6 electrons that will be placed in the 2nd valence shell. Each shell in an atom can only take up a fixed number of electrons. For the first shell, only two electrons can be found. For the second shell, it can hold up to 8 electrons. However, for this case only six electrons can be found since the others are found in the first shell.
If there are no selections than i would say a thick atmosphere and an unusual large moon.<span />
Answer:
mass = 242.372 grams
Explanation:
1- getting the number of moles of HCl:
molarity = number of moles of solute / liters of solution
4 = number of moles of HCl / 5.2
number of moles of HCl = 4 * 5.2 = 20.8 moles
2- getting the number moles of magnesium:
From the balanced equation given, we can note that one mole of magnesium is required to react with two moles of HCl. To get the number of moles required to react with 20.8 moles of HCl. we will simply do cross multiplication as follows:
1 mole of Mg ...............> 2 moles of HCl
?? moles of Mg ...........> 20.8 moles of HCl
Number of moles of Mg = 20.8 / 2 = 10.4 moles
3- getting the mass of Mg:
number of moles = mass / molar mass
Using the periodic table, we can find that the molar mass of magnesium is 24.305 grams.
This means that:
10.4 = mass / 24.305
mass = 24.305 * 10.4
mass = 242.372 grams
Hope this helps :)
Answer:
Eu(ClO3)3
Explanation:
The chlorate ion is written as follows, ClO⁻ ₃. We can see from this that the ion is univalent.
From the formula, Eu203, it is easy to see that the europium ion is trivalent.
Hence, when a compound is formed between the europium ion and chlorate ion, the compound will be written as Eu(ClO3)3.
This is so because, when ionic compounds are formed, there is an exchange of valence between the ions in the compound. This gives the final formula of the ionic substance.