Answer:
165.726 g.
Explanation:
- For the balanced equation:
<em>Cr₂O₃ + 3H₂S → Cr₂S₃ + 3H₂O,</em>
It is clear that 1 mol of Cr₂O₃ and 3 mol of H₂S to produce 1 mol of Cr₂S₃ and 3 mol of H₂O.
- Firstly, we need to calculate the no. of moles of 324.8 g of chromium(III) sulphide:
no. of moles of Cr₂S₃ = mass/molar mass = (324.8 g)/(200.19 g/mol) = 1.62 mol.
- Now, we can find the "no. of grams" of H₂S are needed:
<u><em>Using cross multiplication:</em></u>
3 mol of H₂S produces → 1 mol of Cr₂S₃, from stichiometry.
??? mol of H₂S produces → 1.62 mol of Cr₂S₃.
∴ The no. of moles of H₂S are needed = (3 mol)(1.62 mol)/(1 mol) = 4.86 mol.
∴ The "no. of grams" of H₂S are needed = (no. of moles of H₂S)(molar mass of H₂S) = (4.86 mol)(34.1 g/mol) = 165.726 g.
<h2>
Explanation:</h2><h3 /><h3>Oxygen- gains 2 electrons to form ions</h3><h3>Fluorine- gains 1 electron to form negative ions</h3><h3>Aluminum - loses three electrons to form ions</h3><h3>Calcium- loses 2 electrons in order to form ions</h3>
<h3>*Non metals gain electrons to form ions</h3><h3>*Metals loses electrons to form ions</h3>
A) <span>A chandelier has been hanging in the kitchen for years
B) </span><span>A log floats on top of the lake
C) </span><span>You place your book on the top of a flat table
Those are the answers. In each case, there is always a force that balances the weight of the object and keeps them in a static equilibrium. Tension, Buoyancy and Normal force.</span>