Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
Work allows energy to be transferred from one object to another. To do work, an agent must exert a force on an object over a long distance.
When work is done, energy is transferred from the agent to the object, resulting in a change in the motion of the object (more specifically, a change in the object's kinetic energy).
What is energy?
Energy is essential to human society and has numerous health benefits. However, each energy source poses some health risks. This article examines the health consequences of each major source of energy, focusing on those with the greatest global impact on disease burden. The harvesting and burning of solid fuels, coal, and biomass have the greatest health consequences, primarily in the form of occupational health risks and household and general ambient air pollution. In the world's poorest households, a lack of access to clean fuels and electricity poses a particularly serious health risk. Although energy efficiency has many advantages, energy use is essential to human society and has numerous health benefits.
To learn more about energy from the given link:
brainly.com/question/1932868
#SPJ9