Answer:
Explanation:
The question relates to motion on a circular path .
Let the radius of the circular path be R .
The centripetal force for circular motion is provided by frictional force
frictional force is equal to μmg , where μ is coefficient of friction and mg is weight
Equating cenrtipetal force and frictionl force in the case of car A
mv² / R = μmg
R = v² /μg
= 26.8 x 26.8 / .335 x 9.8
= 218.77 m
In case of moton of car B
mv² / R = μmg
v² = μRg
= .683 x 218.77x 9.8
= 1464.35
v = 38.26 m /s .
1) The velocity of the particle is given by the derivative of the position. So, if we derive s(t), we get the velocity of the particle as a function of the time:

2) The acceleration of the particle is given by the derivative of the velocity. So, if we derive v(t), we get the acceleration of the particle as a function of the time:

The reason why a delivery truck filled with birds sitting on the floor be heavier than a truck with the same birds flying around is because when the birds are sitting on the floor, they are adding their weight to the truck.
Meanwhile, if the birds are flying around they aren't resting on the truck or touching it, so therefore their weight wouldn't be added to the truck.
The mass of the truck will remain the same as you cannot change the mass but the weight will vary depending on the items and objects placed in it.
Answer:
Number of electrons, n = 395.47
Explanation:
It is given that,
Force between two spheres, 
Distance between spheres, r = 35 cm = 0.35 m
A force of repulsion is acting on the spheres. It is given by :





Let n is the number of electrons on the spheres. So,
q = n e


n = 395.47
So, the the number of excess electrons on the spheres are 395.47. Hence, this is the required solution.
False. This is because atoms can be rearranged, but they can not be destroyed or created. This explains the law of conservation of mass.