Answer:
is sugar and water becouse sugar can solote the water
The answer would be C. (:
Answer:
0.01 H
Explanation:
V = 12 cos (1000t + 45)
C = 100 micro farad
Let the inductance be L .
When the current and the voltage are in the same phase so it is the condition of resonance.
So capacitive reactance = inductive reactance
Xc = XL
1/ωC = ωL
L = 1 / ω²C
By comparisonV = Vo Cos (ωt + Ф)
ω = 1000 rad/s
L = 1 / (1000 x 1000 x 100 x 10^-6)
L = 1 / 100
L = 0.01H
thus, the inductance of the inductor is 0.01 H.
Answer:
KE_2 = 3.48J
Explanation:
Conservation of Energy
E_1 = E_2
PE_1+KE_1 = PE_2+KE_2
m*g*h+(1/2)m*v² = m*g*h+(1/2)m*v²
(0.0780kg)*(9.81m/s²)*(5.36m)+(.5)*(0.0780kg)*(4.84m/s)² = (0.0780kg)*(9.81m/s²)*(2m)+KE_2
4.10J+0.914J = 1.53J + KE_2
5.01J = 1.53J + KE_2
KE_2 = 3.48J
An ant can have more momentum than an elephant when the elephant is standing still.
Answer: A
Explanation
The momentum is the quantification of the movement done by an object.
It is found to be dependent on the mass of the object and the velocity with which it is moving.
In the present case, the ant has negligible mass compared to elephant so the momentum can be more for ant only when the velocity with which the elephant is moving tends to be zero.
As the velocity of elephant will be zero, the momentum of elephant will be zero so in this criteria, the moving ant will be having more momentum compared to elephant with zero velocity.
So an elephant with zero velocity means the elephant is standing still.
Thus, the condition in which the ant will be having more momentum compared to elephant is when the elephant stands still.