Its "C" because without oxygen you can't have fire
Answer:
El ancho del río es 59.9 metros.
Step-by-step explanation:
El ancho del río lo podemos calcular con la siguiente relación trigonométrica asumiendo que la torre forma un triángulo rectángulo con el río:

En donde:
CA: es el cateto adyacente = Altura de la torre = 28.2 m
CO: es el cateto opuesto = ancho del río =?
θ: es el ángulo adyacente a CA
Dado que el ángulo de depresión (25.2°) está ubicado fuera de la parte superior de la hipotenusa del triángulo que forma la torre con la orilla opuesta del río, debemos calcular el ángulo interno (θ) como sigue:

Ahora, el ancho del río es:

Por lo tanto, el ancho del río es 59.9 metros.
Espero que te sea de utilidad!
<u>Problem</u>
A bag contains 6 blue marbles, 10 red marbles, and 9 green marbles. If two marbles are drawn at random without replacement, what is the probability that two red marbles are drawn?
<u>Work </u>
Probability = no. of favorable outcomes /total no. of outcomes
Probability of getting a blue marble=5/5+6+9=5/20
Probability of getting a red marble=6/20−1=6/19
5/20×6/19
<u>Answer</u>
3/20
So it is C.
Answer:
y = -3x + 1
Step-by-step explanation:
Starting with the point (-1, 4) and the slope m = -3, write out the point-slope equation of a straight line: y - k = m(x - h) becomes y - 4 = -3(x + 1), or:
y = -3x - 3 + 4
y = -3x + 1 This is the same as answer choice (b).
Answer:
(x, y) = (2, 5)
Step-by-step explanation:
I find it easier to solve equations like this by solving for x' = 1/x and y' = 1/y. The equations then become ...
3x' -y' = 13/10
x' +2y' = 9/10
Adding twice the first equation to the second, we get ...
2(3x' -y') +(x' +2y') = 2(13/10) +(9/10)
7x' = 35/10 . . . . . . simplify
x' = 5/10 = 1/2 . . . . divide by 7
Using the first equation to find y', we have ...
y' = 3x' -13/10 = 3(5/10) -13/10 = 2/10 = 1/5
So, the solution is ...
x = 1/x' = 1/(1/2) = 2
y = 1/y' = 1/(1/5) = 5
(x, y) = (2, 5)
_____
The attached graph shows the original equations. There are two points of intersection of the curves, one at (0, 0). Of course, both equations are undefined at that point, so each graph will have a "hole" there.