1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
2 years ago
5

Point L is located at (-3,-6) where is L after a reflection over the y-axis

Mathematics
1 answer:
ohaa [14]2 years ago
3 0

9514 1404 393

Answer:

  L'(3, -6)

Step-by-step explanation:

The reflection over the y-axis is modeled by the transformation ...

  (x, y) ⇒ (-x, y)

  L(-3, -6) ⇒ L'(3, -6)

Point L is located at (3, -6) after the reflection from the 3rd quadrant to the 4th quadrant across the y-axis.

You might be interested in
Simplify expression with rational exponents.
musickatia [10]
27^(4/3)+4^(3/2) can be simplified using roots.  

The cube root of 27 is 3 and the square root of 4 is 2.  This removes the denominators from the expression.  The expression is now 3^4+2^3.

Simplify this and you get 81+8=89
5 0
3 years ago
 what is the average of 55 75 20 46 60
tatyana61 [14]

Answer:

51.2

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
PLEASE HELP WITH THIS
tankabanditka [31]

Answer:

Step-by-step explanation:

i Don't now how to explain the answer

8 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
A dime is 1/2 inch wide if you put 5 dimes end to end, how long will they be begginning to end
Contact [7]
If you put 5 which means its 2 1/2 ( I think) Because two 1/2 makes one.
8 0
3 years ago
Read 2 more answers
Other questions:
  • Plz helpaaaaaaaaaaaa
    8·2 answers
  • Why are they not equal? Please explain!!
    8·2 answers
  • I’ll give brainliest! I need this answered by tomorrow!!
    7·1 answer
  • O is the midpoint of segment FG. FO=3x+17, OG=7x-15. <br><br><br> 98 points
    13·2 answers
  • $73 is what percent of $125
    9·1 answer
  • 87.125 is it rational or irrational? Explain how.
    10·2 answers
  • Four family members compared their ages. Terell is 3 years younger than Danny. Danny is 1 year younger than Pablo. Pablo's age i
    5·1 answer
  • Is y=2/7x+2 is proportional?
    9·2 answers
  • Describe three strength training exercises that can be performed by adults at an average fitness level and then discuss at least
    13·1 answer
  • A straight line has gradient -2 and passes through the point (-3 , 10).
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!