1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
4 years ago
9

On February 4th, Jamie and Kevin jogged together.

Mathematics
1 answer:
ludmilkaskok [199]4 years ago
7 0

Find the common multiples of 3 and 4:

3: 3, 6, 9 12, 15

4: 4, 8, 12, 16

The smallest common multiple for both 3 and 4 is 12, so this means every 12 days they would run together.

Add 12 days to February 4th to get February 16th.

You might be interested in
Solve each proportion.<br><br> 4/9=10/x <br><br> Wat is x?
Fynjy0 [20]

Answer:

x=22.5

Step-by-step explanation:

90=4x

x=22.5

Hope this helps!

6 0
3 years ago
Please help me with this question thank you
gulaghasi [49]

Answer:

\mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

Step-by-step explanation:

Given

y=\sqrt{\frac{2x+1}{x-1}}

Taking square of both sides

y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)\:^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Simplify}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=0

As we know that \mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2:\quad \left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)

so

\left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)=0        

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2x+1}{x-1}}=0

\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}

y+\sqrt{\frac{2x+1}{x-1}}-y=0-y

\sqrt{\frac{2x+1}{x-1}}=-y

\mathrm{Square\:both\:sides}

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2

\mathrm{Expand\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}=a^{\frac{1}{2}}

=\left(\left(\frac{2x+1}{x-1}\right)^{\frac{1}{2}}\right)^2

=\frac{2x+1}{x-1}

so equation  \left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2 becomes

\frac{2x+1}{x-1}=y^2

now

\mathrm{Solve\:}\:\frac{2x+1}{x-1}=y^2

\frac{2x+1}{x-1}=y^2

\mathrm{Multiply\:both\:sides\:by\:}x-1

\frac{2x+1}{x-1}\left(x-1\right)=y^2\left(x-1\right)

2x+1=y^2\left(x-1\right)

2x+1=xy^2-y^2         ∵  y^2\left(x-1\right):\quad xy^2-y^2

2x=xy^2-y^2-1

2x-xy^2=-y^2-1

x\left(2-y^2\right)=-y^2-1         ∵ \mathrm{Factor}\:2x-xy^2:\quad x\left(2-y^2\right)

\mathrm{Divide\:both\:sides\:by\:}2-y^2

\frac{x\left(2-y^2\right)}{2-y^2}=-\frac{y^2}{2-y^2}-\frac{1}{2-y^2}

x=\frac{-y^2-1}{2-y^2}

so

y+\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\le \:0\right\}

similarly

y-\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

\mathrm{Verify\:Solutions}:\quad x=\frac{-y^2-1}{2-y^2}

\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Remove\:the\:ones\:that\:don't\:agree\:with\:the\:equation.}

\mathrm{Plug}\quad x=\frac{-y^2-1}{2-y^2}

y^2=\left(\sqrt{\frac{2\left(\frac{-y^2-1}{2-y^2}\right)+1}{\left(\frac{-y^2-1}{2-y^2}\right)-1}}\right)^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=0

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2:\quad \left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)

so

\left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\le \:0

\mathrm{Solve\:}\:y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\ge \:0

\mathrm{True\:for\:all}\:y

Therefore,  \mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

6 0
3 years ago
The graph shows the function f(x) = lx - h| + k. What is the<br> value of h?
Ronch [10]

Answer:h=f(X)-x-k

Step-by-step explanation:

F(x)=x+ h+k

h = F(x)-x -k

4 0
3 years ago
2[5+2(8-6)] I need help
Sergeu [11.5K]
2[5+2(8-6)]
2[5+2(2)]
2[5+4]
2[9]
18
7 0
3 years ago
Read 2 more answers
Tiffany earned a 90% on her math test. There were 50 questions on the test. How many questions did Tiffany answer correctly?
stellarik [79]
45/50
45 divided by 50 = 0.9
90%
3 0
3 years ago
Other questions:
  • What value of X would make U tangent to circle P at point Q
    15·2 answers
  • Use an area model to solve the equation <br>391 × 41=
    6·2 answers
  • Paid the rent for the month,$650
    8·1 answer
  • Angie's family goes to the movies and got popcorn and drinks to enjoy during the show. The family got 5 drinks and 3 tubes of po
    7·1 answer
  • What are the next two terms after 1, 4, 6, 24, 26
    9·1 answer
  • Two hikers are 44 miles apart and walking toward each other. They meet in 10 hours. Find the rate of each hiker if one hiker wal
    13·1 answer
  • the size of an interior angle of a regular polygon is 3x. It's exterior is (x- 20)°. Find number if the sides of the polygon.​
    10·1 answer
  • Determine whether y= 1 is a solution to 10 = y-9.
    12·2 answers
  • It takes Zack 15 minutes to walk 7 1/2 blocks to the swimming pool. At this rate, how many blocks can he walk in one minute?
    12·2 answers
  • Element X decays radioactively with a half life of 15 minutes. If there are 600 grams
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!