1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Savatey [412]
3 years ago
10

the area of a rectangle is given by the equation y=x^2-9x+14 and the length of the rectangle is x-2. which of the following expr

essions represents the width of the rectangle?
Mathematics
1 answer:
Rudik [331]3 years ago
3 0
Divide x2 - 9x +14 by x-2
You get x - 7

Check your work by multiplying x-2 and x-7
Since you get x2 - 9x +14,

x-7 is the answer.
You might be interested in
What is 5-6x=2+7x step by step?
HACTEHA [7]
The first thing you do is subtract 2 from both sides to move the 2 to the left side
3-6x=7x
now add 6x to both sides to move -6x to the right
3=13x
divide by 13 to eliminate the 13 on the right side
3/13
4 0
3 years ago
Read 2 more answers
Can anyone please help me in this
Alik [6]

These problems are called systems of equations. Basically you have two linear equations and you need to find the values for x and y. In other words, all these equation are lines and our answer will be the exact point that the pair of lines intersect. For example, if we get x=1 and y=2 the lines will intersect at point (1,2). Now that you have some background knowledge here comes the tricks and tactics kid.

We know that we can solve one variable equation easily. For example...

x+1=2

x=1 obviously

Cause we have two variables x and y it is not possible to find a solution. For example, in the equation x+y=10, x=1 when y=9 and x=2 when y=8. There is not correct answer.

So what can we do? We have to make a two variable equation into a one variable equation.

There are two ways to do this: substitution and elimination. I will create a sample problem and then solve it using both methods.

x+y=2

2y-y=1

3)  

-3x-5y=-7 -----> -12x-20y=-28

-4x-3y=-2 ------> -12x-9y=-6

 -12x-20y=-28

-(-12x-9y=-6)

---------------------

-11y=-22

y=2

-3x-5(2)=-7

-3x=3

x=-1

4) 8x+4y=12 ---> 24x+12y=36

7x+3y=10 ---> 28x+12y=40

 28x+12y=40

-(24x+12y=36)

---------------------

4x=4

x=1

8(1)+4y=12

4y=4

y=1

5) 4x+3y=-7

-2x-5y=7 ----> -4x-10y=14

    4x+3y=-7

+(-4x-10y=14)

-------------------

-7y=7

y=-1

4x+3(-1)=-7

4x=-4

x=-1

6) 8x-3y=-9 ---> 32x-12y=-36

5x+4y=12 ---> 15x+12y=36

 32x-12y=-36

+(15x+12y=36)

--------------------

47x=0

x=0

8(0)-3y=-9

-3y=-9

y=3

7)-3x+5y=-2

2x-2y=1 ---> x-y=1/2 ----> x=y+1/2

-3(y+1/2)+5y=-2

-3y-1.5+5y=-2

2y=-0.5

y=0.25

2x-2(0.25)=1

2x=1.5

x=0.75

4 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Which equation is equivalent to ax+b=c
alexgriva [62]

Answer: b = c-ax

 

   hope this helps:)

7 0
3 years ago
Read 2 more answers
3x+y=9 and 3x=9-y solve each system by elimination to prove your answer, I am stuck on this one
Svetllana [295]
Infinitely many solutions.I will try to solve your system of equations.<span><span><span><span>3x</span>+y</span>=9</span>;<span><span>3x</span>=<span><span>−y</span>+9</span></span></span>Step: Solve<span><span><span>3x</span>+y</span>=9</span>for y:<span><span><span><span>3x</span>+y</span>+<span>−<span>3x</span></span></span>=<span>9+<span>−<span>3x</span></span></span></span>(Add -3x to both sides)<span>y=<span><span>−<span>3x</span></span>+9</span></span>Step: Substitute<span><span>−<span>3x</span></span>+9</span>foryin<span><span><span>3x</span>=<span><span>−y</span>+9</span></span>:</span><span><span>3x</span>=<span><span>−y</span>+9</span></span><span><span>3x</span>=<span><span>−<span>(<span><span>−<span>3x</span></span>+9</span>)</span></span>+9</span></span><span><span>3x</span>=<span>3x</span></span>(Simplify both sides of the equation)<span><span><span>3x</span>+<span>−<span>3x</span></span></span>=<span><span>3x</span>+<span>−<span>3x</span></span></span></span><span>(Add -3x to both sides)

so ur answer is
</span><span>Infinitely many solutions.</span><span>

</span>
7 0
3 years ago
Other questions:
  • Reuben drove 576 miles in 8 hours.
    6·1 answer
  • a length of rope 4.12 ft long is cut into pieces 2.06 ft long. About how many pieces would there be? Use estimation to determine
    10·1 answer
  • Answer this questions for 40 points! :) it is attached.
    5·2 answers
  • An item is regularly priced at
    12·1 answer
  • The ordered pairs {(1, 2), (2, 3), (3, 4)} could be answers for the function rule x + 1. (If you put the x value in, would you g
    14·1 answer
  • Help in Tuesday aswell
    8·1 answer
  • Solve for x in the triangle, Round your answer to the nearest tenth.
    7·2 answers
  • Solve 3 ^ (x - 8) = 8 for x using the change of base formula logb y = (log y)/(log b)
    5·2 answers
  • (2,2) (2,-4) (-5,-4)(-5,2)
    7·2 answers
  • Suppose you want to test the effectiveness of a certain drug for treating a disease that said you wanted to see if using the dru
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!