Answer:
//This Program is written in C++
// Comments are used for explanatory purpose
#include <iostream>
using namespace std;
enum mailbox{open, close};
int box[149];
void closeAllBoxes();
void OpenClose();
void printAll();
int main()
{
closeAllBoxes();
OpenClose();
printAll();
return 0;
}
void closeAllBoxes()
{
for (int i = 0; i < 150; i++) //Iterate through from 0 to 149 which literarily means 1 to 150
{
box[i] = close; //Close all boxes
}
}
void OpenClose()
{
for(int i = 2; i < 150; i++) {
for(int j = i; j < 150; j += i) {
if (box[j] == close) //Open box if box is closed
box[j] = open;
else
box[j] = close; // Close box if box is opened
}
}
// At the end of this test, all boxes would be closed
}
void printAll()
{
for (int x = 0; x < 150; x++) //use this to test
{
if (box[x] = 1)
{
cout << "Mailbox #" << x+1 << " is closed" << endl;
// Print all close boxes
}
}
}
Explanation:
Answer:
Final Velocity (Vf)= 139.864 ft/s
Time (t)= 4,34 s
Explanation:
This is a free fall problem, to solve it we will apply free fall concepts:
In a free fall the acceletarion is gravity (g) = 9,81 m/s2, if we convert it to ft/s^2 = g= 32.174 ft/s^2
- Final velocity is Vf= Vo+ g*t[tex]Vf^{2} = Vo^{2} +2*g*h
where h is height (304 ft in this case).
Vo =0 since the hammer wasn't moving when it stared to fall
Then Vf^2= 0 + 2* 32.174 ft/s^2 *304 ft
Vf^2= 19,561.8224 ft^2/s^2
Vf=[sqrt{19561.8224 ft^2/s^2}
Vf=139.864 ft/s
Time t= (Vf-Vo)/g => (139.864 ft/s-0)/32.174 ft/s^2 = 4.34 sec
Good luck!
Answer:
The power of force F is 115.2 W
Explanation:
Use following formula
Power = F x V
= F cos0
= (30) x 4/5
= 24N
Now Calculate V using following formula
V =
+ at
= 0
a =
/ m
a = 24N / 20 kg
a = 1.2m / 
no place value in the formula of V
V = 0 + (1.2)(4)
V = 4.8 m/s
So,
Power =
x V
Power = 24 x 4.8
Power = 115.2 W
Answer:
b)False
Explanation:
Those material have high thermal it is very difficult to weld because due to high thermal conductivity it transmit the heat in to the surrounding and can not reach a particular temperature required to melt the material.And when material does not melt then there is no possibility to weld the material.
So from above we can say that it is very difficult to weld the copper material due to high thermal conductivity.Generally welding of copper done by usiong gas welding technique.
So our option b is right.
Boussinesq's influence factor is high Westergaard's theory:- 1. ) Assumes that the soil medium is anisotropic 2) Deals with thin sheets of rigid material sandwiched in a homogeneous medium. ... 5) Westergaard's influence factor is low compare to Boussinesq's influence factor.