1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
defon
3 years ago
8

The hydrofoil boat has an A-36 steel propeller shaft that is 100 ft long. It is connected to an in-line diesel engine that deliv

ers a maximum power of 2490 hp and causes the shaft to
Engineering
1 answer:
Nataliya [291]3 years ago
6 0

The question is incomplete. The complete question is :

The hydrofoil boat has an A-36 steel propeller shaft that is 100 ft long. It is connected to an in-line diesel engine that delivers a maximum power of 2590 hp and causes the shaft to rotate at 1700 rpm . If the outer diameter of the shaft is 8 in. and the wall thickness is $\frac{3}{8}$  in.

A) Determine the maximum shear stress developed in the shaft.

$\tau_{max}$ = ?

B) Also, what is the "wind up," or angle of twist in the shaft at full power?

$ \phi $ = ?

Solution :

Given :

Angular speed, ω = 1700 rpm

                              $ = 1700 \frac{\text{rev}}{\text{min}}\left(\frac{2 \pi \text{ rad}}{\text{rev}}\right) \frac{1 \text{ min}}{60 \ \text{s}}$

                              $= 56.67 \pi \text{ rad/s}$

Power $= 2590 \text{ hp} \left( \frac{550 \text{ ft. lb/s}}{1 \text{ hp}}\right)$

          = 1424500 ft. lb/s

Torque, $T = \frac{P}{\omega}$

                 $=\frac{1424500}{56.67 \pi}$

                 = 8001.27 lb.ft

A). Therefore, maximum shear stress is given by :

Applying the torsion formula

$\tau_{max} = \frac{T_c}{J}$

        $=\frac{8001.27 \times 12 \times 4}{\frac{\pi}{2}\left(4^2 - 3.625^4 \right)}$

      = 2.93 ksi

B). Angle of twist :

     $\phi = \frac{TL}{JG}$

         $=\frac{8001.27 \times 12 \times 100 \times 12}{\frac{\pi}{2}\left(4^4 - 3.625^4\right) \times 11 \times 10^3}$

         = 0.08002 rad

         = 4.58°

You might be interested in
Hęłłõ hõw årę ÿõū dõìńg tõdāÿ
kirill [66]

Answer:

All good :)

What about you??

8 0
3 years ago
Read 2 more answers
A rigid tank with a total volume of 0.05 m3 initially contains a two-phase liquid-vapor mixture of water at a pressure of 15 bar
Westkost [7]

Answer:

a) m_{2} = 0.753\,kg, b) Q_{in} = 2122.963\,kJ

Explanation:

A rigid tank means a storage whose volume is constant. Process is entirely isobaric. Initial and final properties of water are included below:

State 1 - Gas-Vapor Mixture

P = 1500\,kPa

T = 198.29^{\textdegree}C

\nu = 0.02726\,\frac{m^{3}}{kg}

u = 1192.94\,\frac{kJ}{kg}

h_{g} = 2791.0\,\frac{kJ}{kg}

x = 0.2

State 2 - Gas-Vapor Mixture

P = 1500\,kPa

T = 198.29^{\textdegree}C

\nu = 0.06643\,\frac{m^{3}}{kg}

u = 1718.12\,\frac{kJ}{kg}

h_{g} = 2791.0\,\frac{kJ}{kg}

x = 0.5

The model for the rigid tank is created by using the First Law of Thermodynamics:

Q_{in} - (m_{1}-m_{2})\cdot h_{g} = m_{2}\cdot u_{2}-m_{1}\cdot u_{1}

Initial and final masses are:

m_{1} = \frac{V_{1}}{\nu_{1}}

m_{1} = \frac{0.05\,m^{3}}{0.02726\,\frac{m^{3}}{kg} }

m_{1} = 1.834\,kg

m_{2} = \frac{V_{2}}{\nu_{2}}

m_{2} = \frac{0.05\,m^{3}}{0.06643\,\frac{m^{3}}{kg} }

m_{2} = 0.753\,kg

a) The final mass within the tank is:

m_{2} = 0.753\,kg

b) The total amount of heat transfer is:

Q_{in} = m_{2}\cdot u_{2}-m_{1}\cdot u_{1}+ (m_{1}-m_{2})\cdot h_{g}

Q_{in} = (0.753\,kg)\cdot (1718.12\,\frac{kJ}{kg} )- (1.834\,kg)\cdot (1192.94\,\frac{kJ}{kg} ) + (1.081\,kg)\cdot (2791.0\,\frac{kJ}{kg} )

Q_{in} = 2122.963\,kJ

5 0
4 years ago
For which situation will structural firefighting protective clothing provide you with adequate protection
jeka94

Missing part

The options are:

A. You will be exposed to splashes of the material.

B. You will have to handle the material.

C. There are high atmospheric concentrations of the material.

D. None of the above.

Answer:

None of the above

Explanation:

Structural firefighting protective clothing can't give adequate protection when one is exposed to splashes of the material. Moreover, it can't help in a situation where one is required to handle the material or when there are high atmospheric concentrations of the material.

SFC may be used when the following conditions are met:

• Contact with splashes of extremely hazardous materials is unlikely.

• Total atmospheric concentrations do not contain high levels of chemicals toxic to the skin.  

• There are no adverse effects from chemical exposure to small areas of unprotected skin.

• Live victims who are in need of rescue, such as those found in a terrorist attack.  

3 0
3 years ago
External crack of length of 3.0 mm was detected on the surface of the shaft of wind turbine made from 4340 steel. The diameter o
sveticcg [70]

Answer:

The correct answer is "K_c=6.0369 \ MPa\sqrt{m}".

Explanation:

Given:

Maximum load,

P = 50,000 N

Crack length,

a = 3mm

or,

  = 3×10⁻³ m

Diameter,

d = 32 mm

As we know,

⇒  Maximum stress, \sigma=\frac{P}{A}

                                      =\frac{50000}{(\frac{\pi}{4}\times 32^2)}

                                      =62.20 \ N/mm^2

Now,

⇒  Fracture tougness, K_c=Y \sigma\sqrt{\pi a}

On substituting the values, we get

                                           =1\times 62.20\times \sqrt{3.14\times 3\times 10^{-3}}

                                           =6.0369 \ MPa\sqrt{m}

4 0
3 years ago
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
3 years ago
Other questions:
  • Consider the following list. list = {24, 20, 10, 75, 70, 18, 60, 35} Suppose that list is sorted using the insertion sort algori
    13·1 answer
  • A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 55 MPa √m (50 ksi √in.). If, during
    5·1 answer
  • I have a 308 bullet stuck in my ak,s mag help?
    12·2 answers
  • A safety interlock module operates by monitoring the voltage from the
    12·1 answer
  • A hypothetical A-B alloy of composition 57 wt% B-43 wt% A at some temperature is found to consist of mass fractions of 0.5 for b
    15·1 answer
  • What is 7/8 + 1/2 on a ruler
    15·2 answers
  • Which of the following explains the main reason to cut a piece of wood on the outside of the measurement mark?
    13·1 answer
  • What are the materials and tools used to build a headgear?​
    5·1 answer
  • All of the dimensions on an aircraft drawing are_________<br> to the bottom of the drawing.
    12·1 answer
  • A motor car shaft consists of a steel tube 30 mm internal diameter and 4 mm thick. The engine develops 10 kW at 2000 r.p.m. Find
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!