The answer is B because it could be feasible but it’s not a need it and you got a time frame but it’s not a requirement and it doesn’t have to be unique.
Answer:
$7,778.35
Explanation:
At year 3, the final payment of the remaining balance is equal to the present worth P of the last three payments.
First, calculate the uniform payments A:
A = 12000(A/P, 4%, 5)
= 12000(0.2246) = 2695.2 (from the calculator)
Then take the last three payments as its own cash flow.
To calculate the new P:
P = 2695.2 + 2695.2(P/A, 4%, 2) = 2695.2 + 2695.2(1.886) = 7778.35
Therefore, the final payment is $7,778.35
Answer:
a) P = 86720 N
b) L = 131.2983 mm
Explanation:
σ = 271 MPa = 271*10⁶ Pa
E = 119 GPa = 119*10⁹ Pa
A = 320 mm² = (320 mm²)(1 m² / 10⁶ mm²) = 3.2*10⁻⁴ m²
a) P = ?
We can apply the equation
σ = P / A ⇒ P = σ*A = (271*10⁶ Pa)(3.2*10⁻⁴ m²) = 86720 N
b) L₀ = 131 mm = 0.131 m
We can get ΔL applying the following formula (Hooke's Law):
ΔL = (P*L₀) / (A*E) ⇒ ΔL = (86720 N*0.131 m) / (3.2*10⁻⁴ m²*119*10⁹ Pa)
⇒ ΔL = 2.9832*10⁻⁴ m = 0.2983 mm
Finally we obtain
L = L₀ + ΔL = 131 mm + 0.2983 mm = 131.2983 mm
Answer:
The number of inputs processed by the new machine is 64
Solution:
As per the question:
The time complexity is given by:

where
n = number of inputs
T = Time taken by the machine for 'n' inputs
Also
The new machine is 65 times faster than the one currently in use.
Let us assume that the new machine takes the same time to solve k operations.
Then
T(k) = 64 T(n)


k = 64n
Thus the new machine will process 64 inputs in the time duration T