1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darina [25.2K]
3 years ago
14

At a particular academically challenging high school, the average gpa of a high school senior is known to be normally distribute

d. after a sample of 20 seniors is taken, the average gpa is found to be 2.71 and the variance is determined to be 0.25. find a 90% confidence interval for the population mean gpa.
Mathematics
2 answers:
valentina_108 [34]3 years ago
8 0

Answer:

The 90% confidence interval for the population mean gpa is [2.526,2.894].

Step-by-step explanation:

The confidence interval for population mean is

\mu\pm z^{*}\cdot \frac{\sigma}{\sqrt{n}}

Where, μ is population mean, σ is standard deviation, z* is the value of z-score and n is number of samples.

The z-score value for 90% confidence interval is 1.645.

The average gpa is found to be 2.71, so μ=2.71. The variance is 0.25, it means

\sigma^2=0.25

\sigma=0.5

The 90% confidence interval for population mean is

2.71\pm 1.645\cdot \frac{0.5}{\sqrt{20}}

[2.71-1.645\cdot \frac{0.5}{\sqrt{20}},2.71+1.645\cdot \frac{0.5}{\sqrt{20}}]

[2.526,2.894]

Therefore the 90% confidence interval for the population mean gpa is [2.526,2.894].

brilliants [131]3 years ago
7 0

Solution: The 90% confidence interval for the population mean is:

\bar{x} \pm t_{\frac{0.1}{2}} \frac{s}{\sqrt{n}}

Where:

\bar{x}=2.71

s=\sqrt{0.25} =0.5

t_{\frac{0.1}{2}}=1.729 is the critical value at 0.1 significance level for df = n-1 =20-1=19

2.71 \pm 1.729 \frac{0.5}{\sqrt{20}}

2.71 \pm0.19

\left( 2.71-0.19,2.71+0.19\right)

\left(2.52,2.90 \right)

Therefore, the 90% confidence interval for the population mean is \left(2.52,2.90 \right)


You might be interested in
Find the two square roots of each complex number by creating and solving polynomial equations.
son4ous [18]

Answer:

1) w₁=4 - i w₂= -4 + i

2) w₁= 3 - i w₂= -3  + i

3) w₁= 1 + 2i w₂= - 1 - 2i

4) w₁= 2- 3i w₂= -2 + 3i

5) w₁= 5 - 2i w₂= -5 + 2i

6) w₁= 5 - 3i w₂= -5 + 3i

Step-by-step explanation:

The root of a complex number is given by:

\sqrt[n]{z}=\sqrt[n]{r}(Cos(\frac{\theta+2k\pi}{n}) + i Sin(\frac{\theta+2k\pi}{n}))

where:

r: is the module of the complex number

θ: is the angle of the complex number to the positive axis x

n: index of the root

1) z = 15 − 8i  ⇒ r=17 θ= -0.4899 rad

w₁=\sqrt{17}(Cos(\frac{-0.4899}{2}) + i Sin(\frac{-0.4899}{2}))=4-i

w₂=\sqrt{17}(Cos(\frac{-0.4899+2\pi}{2}) + i Sin(\frac{-0.4899+2\pi}{2}))=-1+i

2) z = 8 − 6i  ⇒ r=10 θ= -0.6435 rad

w₁=\sqrt{10}(Cos(\frac{ -0.6435}{2}) + i Sin(\frac{ -0.6435}{2}))= 3 - i

w₂=\sqrt{10}(Cos(\frac{ -0.6435+2\pi}{2}) + i Sin(\frac{ -0.6435+2\pi}{2}))= -3  + i

3) z = −3 + 4i  ⇒ r=5 θ= -0.9316 rad

w₁=\sqrt{5}(Cos(\frac{-0.9316}{2}) + i Sin(\frac{-0.9316}{2}))= 1 + 2i

w₂=\sqrt{5}(Cos(\frac{-0.9316+2\pi}{2}) + i Sin(\frac{-0.9316+2\pi}{2}))= -1 - 2i

4) z = −5 − 12i  ⇒ r=13 θ= 0.4426 rad

w₁=\sqrt{13}(Cos(\frac{0.4426}{2}) + i Sin(\frac{0.4426}{2}))= 2- 3i

w₂=\sqrt{13}(Cos(\frac{0.4426+2\pi}{2}) + i Sin(\frac{0.4426+2\pi}{2}))= -2 + 3i

5) z = 21 − 20i  ⇒ r=29 θ= -0.8098 rad

w₁=\sqrt{29}(Cos(\frac{-0.8098}{2}) + i Sin(\frac{-0.8098}{2}))= 5 - 2i

w₂=\sqrt{29}(Cos(\frac{-0.8098+2\pi}{2}) + i Sin(\frac{-0.8098+2\pi}{2}))= -5 + 2i

6) z = 16 − 30i ⇒ r=34 θ= -1.0808 rad

w₁=\sqrt{34}(Cos(\frac{-1.0808}{2}) + i Sin(\frac{-1.0808}{2}))= 5 - 3i

w₂=\sqrt{34}(Cos(\frac{-1.0808+2\pi}{2}) + i Sin(\frac{-1.0808+2\pi}{2}))= -5 + 3i

6 0
3 years ago
What is a point-slope equation of the line with slope -10 that goes through the point (1,4)
KatRina [158]
\bf (\stackrel{x_1}{1}~,~\stackrel{y_1}{4})\qquad \qquad \qquad 
% slope  = m
slope =  m\implies -10
\\\\\\
% point-slope intercept
\stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-4=-10(x-1)
8 0
2 years ago
Read 2 more answers
An element with mass 780 grams decays by 16.3% per minute. How much of the element is remaining after 16 minutes, to the nearest
vitfil [10]
Exponential decay is a very common process especially when we are talking about radioactive materials. So, there is already a common formula for this type of behavior which is written below:

A = Pe^-rt
where
A is the amount left after time t
P is the initial amount at t=0
r is the rate

Substituting the values,
A = (780 g)(e^-0.163*16)
A = 57.5 g
8 0
3 years ago
What is the order of rotational symmetry of a kite?<br> A) 0 <br> B) 1 <br> C) 2 <br> D) 4
KIM [24]
The order of rotational symmetry of a kite is 1
5 0
3 years ago
Challenge An airplane is preparing to land at an airport. It is 36,000 feet above the ground and is descending at the rate of 3,
Alona [7]

Step-by-step explanation:

I don't know the answer to this one so could someone please tell me

Thanks

7 0
3 years ago
Other questions:
  • 7. Are the two lines parallel, perpendicular, or neither? Explain your answer. Show work needed to answer the
    11·1 answer
  • How do I solve this problem
    10·2 answers
  • What is the approximate volume of the cone? PLEASE HELP ASAP 38 PTS​
    6·1 answer
  • What is the area of the figure, and please show the steps?
    10·2 answers
  • Simplify the following expression : 2(x-6)+5
    14·2 answers
  • Do you know the answer??
    8·1 answer
  • (a) In 2008 the total number of tickets sold for an athletics meeting was 3136.
    8·1 answer
  • No it wouldnt because quadrant one is ++ so how is it that
    11·2 answers
  • 2,6,18,...<br> Find the 8th term.<br> Find the 8th term.
    12·1 answer
  • In the diagram, is parallel to. Also, is drawn such that the length of is half the length of. If sin A = 0.5, then what is sin E
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!