According to Diagram B, look at the 1600 elevation until you see the descending air line touches it. Then look down at the temperature at the bottom of the graph. It is between 0 degrees to 5 degrees.
The only number that is between that range is 2 degrees C.
- E(Bonds broken) = 1371 kJ/mol reaction
- E(Bonds formed) = 1852 kJ/mol reaction
- ΔH = -481 kJ/mol.
- The reaction is exothermic.
<h3>Explanation</h3>
2 H-H + O=O → 2 H-O-H
There are two moles of H-H bonds and one mole of O=O bonds in one mole of reactants. All of them will break in the reaction. That will absorb
- E(Bonds broken) = 2 × 436 + 499 = 1371 kJ/mol reaction.
- ΔH(Breaking bonds) = +1371 kJ/mol
Each mole of the reaction will form two moles of water molecules. Each mole of H₂O molecules have two moles O-H bonds. Two moles of the molecule will have four moles of O-H bonds. Forming all those bond will release
- E(Bonds formed) = 2 × 2 × 463 = 1852 kJ/mol reaction.
- ΔH(Forming bonds) = - 1852 kJ/mol
Heat of the reaction:
is negative. As a result, the reaction is exothermic.
it's the third one The chemical equation will have two arrows pointing in different directions. !
Answer:
The final volume is 3.07L
Explanation:
The general gas law will be used:
P1V1 /T1 = P2V2 /T2
V2 =P1 V1 T2 / P2 T1
Give the variables to the standard unit:
P1 = 345 torr = 345 /760 atm = 0.4539atm
T1 = -15°C = -15 + 273 = 258K
V1 = 3.48L
T2 = 36°C = 36+ 273 = 309K
P2 = 468 torr = 468 * 1/ 760 atm = 0.6158atm
V2 = ?
Equate the values into the gas equation, you have:
V2 = 0.4539 * 3.48 * 309 / 0.6158 * 258
V2 = 488.0877 /158.8764
V2 = 3.07
The final volume is 3.07L
It is either a proton or a neutron