"They have different slopes but the same y-intercept, so they have one solution" is the statement which best describes the two lines.
Answer: Option D
<u>Step-by-step explanation:</u>
Given equations:


As we know that the slope intercept form of a line is
y = m x + c
So, from equation 1 and equation 2 we can see that


So, from the above expressions, we can say that both lines have different slopes but have same y – intercept with one common solution when x = 0.
Answer:
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(
−
∞
,
∞
)
Set-Builder Notation:
{
x
|
x
∈
R
}
Step-by-step explanation:
hope that helps bigger terms
Sure , What Do Youu Need Help With ?
True, and it's called an isosceles right triangle :D