1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
2 years ago
6

Coulomb's law states that the force F of attraction between two oppositely charged particles varies jointly as the magnitude of

their electrical charges q1 and q2 and inversely as the square of the distance d between the particles. Find the effect on F of doubling q1 and q2 and halving the distance between them.
Physics
1 answer:
Mars2501 [29]2 years ago
4 0

Answer: Force F will be one-sixteenth of the new force when the charges are doubled and distance halved

Explanation:

Let the charges be q1 and q2 and the distance between the charges be 'd'

Mathematical representation of coulombs law will be;

F1=kq1q2/d²...(1)

Where k is the electrostatic constant.

If q1 and q2 is doubled and the distance halved, we will have;

F2 = k(2q1)(2q2)/(d/2)²

F2 = 4kq1q2/(d²/4)

F2 = 16kq1q2/d²...(2)

Dividing equation 1 by 2

F1/F2 = kq1q2/d² ÷ 16kq1q2/d²

F1/F2 = kq1q2/d² × d²/16kq1q2

F1/F2 = 1/16

F1 = 1/16F2

This shows that the force F will be one-sixteenth of the new force when the charges are doubled and distance halved

You might be interested in
What term describes the resistance that one encounters when moving over another
Anvisha [2.4K]
Friction? For example, like when a car's tires skid on rough concrete.
5 0
2 years ago
A large cylindrical tank contains 0.750 cubic meters of nitrogen gas at 27 degrees celsius and 1.5 e5 pa absolute pressure. the
k0ka [10]
<span>3.36x10^5 Pascals The ideal gas law is PV=nRT where P = Pressure V = Volume n = number of moles of gas particles R = Ideal gas constant T = Absolute temperature Since n and R will remain constant, let's divide both sides of the equation by T, getting PV=nRT PV/T=nR Since the initial value of PV/T will be equal to the final value of PV/T let's set them equal to each other with the equation P1V1/T1 = P2V2/T2 where P1, V1, T1 = Initial pressure, volume, temperature P2, V2, T2 = Final pressure, volume, temperature Now convert the temperatures to absolute temperature by adding 273.15 to both of them. T1 = 27 + 273.15 = 300.15 T2 = 157 + 273.15 = 430.15 Substitute the known values into the equation 1.5E5*0.75/300.15 = P2*0.48/430.15 And solve for P2 1.5E5*0.75/300.15 = P2*0.48/430.15 430.15 * 1.5E5*0.75/300.15 = P2*0.48 64522500*0.75/300.15 = P2*0.48 48391875/300.15 = P2*0.48 161225.6372 = P2*0.48 161225.6372/0.48 = P2 335886.7441 = P2 Rounding to 3 significant figures gives 3.36x10^5 Pascals. (technically, I should round to 2 significant figures for the result of 3.4x10^5 Pascals, but given the precision of the volumes, I suspect that the extra 0 in the initial pressure was accidentally omitted. It should have been 1.50e5 instead of 1.5e5).</span>
8 0
3 years ago
A positively charged object is brought near but not in contact with the top of an uncharged gold leaf electroscope. The experime
Olin [163]

Answer:

The leaves of the electroscope move further apart.

Explanation:

This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.

Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.

So, the leaves move further apart.

7 0
2 years ago
1. In the laboratory, the life time of a particle moving with speed 2.8 x 10^10 cm\s is found to be 2.5 x 10^-7.
timofeeve [1]

Answer: n the laboratory, the life time of a particle moving with speed 2.8 x 10^10 cm\s is found to be 2.5 x 10^-7. Calculate the proper life of the ...

Explanation:

5 0
3 years ago
What did scientists create using scientific measurements?
Alexxx [7]

Answer:

lines?

Explanation:

3 0
3 years ago
Other questions:
  • Pls I need help I would mark you as the brainliest answer! A train starting from rest attains a velocity 72 km / h in 5 minutes.
    8·1 answer
  • Do your relationships tend to have this quality?
    7·2 answers
  • What is the relationship between the masses of the objects and the gravitational force between them
    10·1 answer
  • A green plant has_____energy
    12·1 answer
  • Help me please I need help?
    13·1 answer
  • Geothermal pumps can be used for cooling, but not heating. true or false?
    12·1 answer
  • An object has a coefficient of static friction of 0.3 and a normal force of 30 N. Find the force of static friction.
    5·2 answers
  • What studies the natural world around us
    14·2 answers
  • How much energy was released if rocket hydrogen fuel was burnt ?​
    7·2 answers
  • Please answer this question ​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!