Answer:
60 miles per hour
Step-by-step explanation:
They are driving a mile a minute, so they are going 60 miles per hour.
<span>The proper fraction is c. 3/4. A proper fraction is a fraction that is less than one. A fraction is less than one if its denominator, the number below the line, is larger than its numerator, the number above the line. 4/3 and 7/6 are both greater than one and 4/4 is equal to one, thus none of them are proper fractions.t</span>
The equation of the ellipse in <em>standard</em> form is (x + 3)² / 100 + (y - 2)² / 64 = 1. (Correct choice: B)
<h3>What is the equation of the ellipse associated with the coordinates of the foci?</h3>
By <em>analytical</em> geometry we know that foci are along the <em>major</em> axis of ellipses and beside the statement we find that such axis is parallel to the x-axis of Cartesian plane. Then, the <em>standard</em> form of the equation of the ellipse is of the following form:
(x - h)² / a² + (y - k)² / b² = 1, where a > b (1)
Where:
- a - Length of the major semiaxis.
- b - Length of the minor semiaxis.
Now, we proceed to find the vertex and the lengths of the semiaxes:
a = 10 units.
b = 8 units.
Vertex
V(x, y) = 0.5 · F₁(x, y) + 0.5 · F₂(x, y)
V(x, y) = 0.5 · (3, 2) + 0.5 · (- 9, 2)
V(x, y) = (1.5, 1) + (- 4.5, 1)
V(x, y) = (- 3, 2)
The equation of the ellipse in <em>standard</em> form is (x + 3)² / 100 + (y - 2)² / 64 = 1. (Correct choice: B)
To learn more on ellipses: brainly.com/question/14281133
#SPJ1
suppose the people have weights that are normally distributed with a mean of 177 lb and a standard deviation of 26 lb.
Find the probability that if a person is randomly selected, his weight will be greater than 174 pounds?
Assume that weights of people are normally distributed with a mean of 177 lb and a standard deviation of 26 lb.
Mean = 177
standard deviation = 26
We find z-score using given mean and standard deviation
z = 
= 
=-0.11538
Probability (z>-0.11538) = 1 - 0.4562 (use normal distribution table)
= 0.5438
P(weight will be greater than 174 lb) = 0.5438