Explanation:
Given :
Amount of solute - sucrose (C12H22O11) = 41 g
Amount of solvent -soda = 355-mL
Molarity of the solution with respect to sucrose= ?
Molarity(M) is a unit of concentration measuring the number of moles of a solute per liter of solution. The SI unit of molarity is mol/L.
Formula to find the molarity of solution :
Molarity =
Amount of solvent is given in mL, let’s convert to L :
1 L = 1000 mL
Therefore, 355 mL in L will be :
= 0.355 L
We have the amount of solute in g, let’s calculate the number of moles first :
Number of moles (n) =
Molar mass of C12H22O11 = 342.29 g/mol.
Therefore, n =
= 0.119 moles.
D. For plato users
(I've had the exact same one)
Answer:
To have the electronic configuration equal to 1s²2s²2p⁶3s²3p⁶4s²3d⁷, the chemical element must have an electrical charge equal to 27, that is, it must have 27 electrons, such as Cobalt (Co), for example.
Explanation:
The electronic configuration shown in the question above is known as the Linus Pauling distribution and represents the energy sub-levels that an electrically charged atom can have in relation to the amount of electrons it has.
The layers sub-levels are presented in the following order 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹º 4p⁶ 5s² 4d¹º 5p⁶ 6s² 4f14 5d¹º 6p⁶ 7s² 5f14 6d¹º 7p⁶. Where the small numbers represent the number of electrons in each sub-level and the large numbers represent the layers of electronic distribution.
Accordingly, we can see that an atom that has the configuration 1s²2s²2p⁶3s²3p⁶4s²3d⁷ has 27 electrons, like Cobalt.
Answer:
<em>The pKa is 13.0.</em>
Explanation:
pKa + pKb = 14
Given, Kb of trimethylamine = 6.3 × 
pKb = - log (6.3 ×
)
= 1.0
⇒ pKa = 14 - pKb = 14 - 1.0
<u>pKa = 13.0</u>
<em><u></u></em>
<em>Check: For most weak acids, pKa ranges from 2 to 13.</em>