Answer:
See below ~
Explanation:
The Mechanical Advantage (MA) is defined as the ratio between the force produced by the machine to the force applied to it.
=============================================================
So,
⇒ 
⇒ This means that the force produced is twice the applied force
c. A current is induced in the coiled wire, which lights the light bulb.
<h3>
</h3><h3>
What is electromagnetic induction?</h3>
If we kept the bar magnet stationary and moved the coil back and forth within the magnetic field an electric current would be induced in the coil.
Then by either moving the wire or changing the magnetic field we can induce a voltage and current within the coil and this process is known as Electromagnetic Induction and is the basic principle of operation of transformers, motors and generators.
When the magnet shown below is moved “towards” the coil, the pointer or needle of the Galvanometer, which is basically a very sensitive center zeroed moving-coil ammeter, will deflect away from its center position in one direction only.
When the magnet stops moving and is held stationary with regards to the coil the needle of the galvanometer returns back to zero as there is no physical movement of the magnetic field.
Therefore ,
If you move a bar magnet back and forth along the axis of the coiled wire shown below then a current is induced in the coiled wire, which lights the light bulb.
Learn more about electromagnetic induction here:
brainly.com/question/26334813
#SPJ1
Answer:
113 miles
Explanation:
45.00 x 2.50= 1.12.5 so 113 miles in 2.50 hours
Answer:
Total work done is 2606.08 J.
Explanation:
Given :
Mass of box , m = 23 kg .
Force applied , F = 100 N .
Angle from horizon ,
.
Coefficient of kinetic friction ,
.
Distance travelled by box , d = 34 m .
Now ,
Total work done = work done by boy + work done by friction.
Hence , this is the required solution.
Answer:
The mechanical energy of the helicopter is
.
Explanation:
It is given that,
Mass of the helicopter, m = 3250 kg
Speed of the helicopter, v = 56.9 m/s
Position of the helicopter, h = 185 m
The energy possessed by an object due to its motion is called its kinetic energy. It is given by :


The energy possessed by an object due to its position is called its potential energy. It is given by :


The sum of kinetic and potential energy is called mechanical energy of the system. It is given by :


or

So, the mechanical energy of the helicopter is
. Hence, this is the required solution.