Answer:
<em>1.11m</em>
Explanation:
From the diagram we are given the following forces;
F1 = 24.3N
F3 = 30N
Since the sum of upward forces is equal to that of downward force, then;
F2 = F1 + F3
F2 = 24.3N + 30N
F2 = 54.3N
Required
Distance between B and C
First we need to get Length of AC
Take moment about A
Anticlockwise moment = F3 cos20 * AC
Anticlockwise moment = 30ACcos 20
Clockwise moment = 1.2 * F2
Clockwise moment = 1.2(54.3) = 65.16Nm
Applying the principle of moment;
Sum of ACW moment = Sum of CW moments
30ACcos 20 = 65.16
AC = 65.16/30cos20
AC = 65.16/28.19
AC = 2.31m
Get the distance BC
AC = AB + BC
BC = AC-AB
BC = 2.31 - 1.2
BC = 1.11m
Hence the separation between B and C is 1.11m
<em>Note that the force F1 got in (a) was the value used in the calculation.</em>
<em></em>
Answer:
Heat flows from hot to cold objects. When a hot and a cold body are in thermal contact, they exchange heat energy until they reach thermal equilibrium, with the hot body cooling down and the cold body warming up. This is a natural phenomenon we experience all the time.
Explanation:
<span>Amplitude is the maximum extent of vibration
As by increasing the amplitude the wave speed ,frequency and wavelength will remain same so it will increase </span><span>the speed of the individual particle in the medium.
This will increase wave energy
so correct option is B
hope it helps</span>
A jug would hold more volume than a mug