1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
15

Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =

30.0 m2 y B ⦁ C = 35.0 m2 . Encuentre A.
Engineering
1 answer:
uranmaximum [27]3 years ago
8 0

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

You might be interested in
A motor is mounted on a platform that is observed to vibrate excessively at an operating speed of 6000 rpm producing a 250-N for
vichka [17]

Answer:

The amplitude of the absorbed mass can be found

for ka:

X_{a} =0.002m=\frac{F_{0} }{K_{a} } =\frac{250}{K_{a} } =125000N/m

now

w^2=\frac{K_{a} }{m_{a} } \\m_{a} =\frac{K_{a} }{w^2} =\frac{125000}{[6000*2\pi /60]^2} =0.317kg

4 0
3 years ago
8. When supplying heated air for a building, one often chooses to mix in some fresh outside air with air that has been heated fr
Afina-wow [57]

Answer:

Check the explanation

Explanation:

Kindly check the attached images below to see the step by step explanation to the question above.

5 0
3 years ago
Which of the following statements best describes the relationship between availability of new green building products and custom
Fed [463]

Answer:

c

Explanation:

4 0
3 years ago
Consider the problem of oxygen transfer from the interior lung cavity, across the lung tissue, to the network of blood vessels o
aalyn [17]

Answer:

See attached images

8 0
3 years ago
Carbon dioxide used as a natural refrigerant flows through a cooler at 10 MPa, which is supercritical, so no condensation occurs
kupik [55]

Answer:

The answer which is a calculation can be found as an attached document

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • The domain of discourse is the members of a chess club. The predicate B(x, y) means that person x has beaten person y at some po
    14·1 answer
  • Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
    10·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • A converging-diverging nozzle has an area ratio of 5.9. (1) Determine the (P0/Pt) values corresponding to the 1st, 2nd, and 3rd
    5·1 answer
  • Pointssss 100 and brainliest :)
    5·1 answer
  • Air is compressed in a well insulated compressor from 95 kPa and 27 C to 600 kPa and 277 C. Use the air tables; assume negligibl
    11·1 answer
  • Explain what the engineering team should advise in the following scenario.
    7·1 answer
  • Importance of tillage​
    7·1 answer
  • Which of the following would be addressed by an employer completing an EAP template?
    11·1 answer
  • A car has a steering wheel with a 15 inch diameter that takes 18 lbs of Effort force to move is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!