1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
15

Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =

30.0 m2 y B ⦁ C = 35.0 m2 . Encuentre A.
Engineering
1 answer:
uranmaximum [27]3 years ago
8 0

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

You might be interested in
Consider the following hypothetical scenario for Jordan Lake, NC. In a given year, the average watershed inflow to the lake is 9
dybincka [34]

Answer:

The lake can withdraw a maximum of 1.464\times 10^{10} cubic feet per year to provide water supply for the Triangle area.

Explanation:

The maximum amount of water that can be withdrawn from the lake is represented by the following formula:

V = V_{in}+V_{p}-V_{e}-V_{out} (Eq. 1)

Where:

V - Available amount of water for water supply in the Triangle area, measured in cubic feet per year.

V_{in} - Inflow amount of water, measured in cubic feet per year.

V_{out} - Amount of water released for the benefit of fish and downstream water users, measured in cubic feet per year.

V_{p} - Amount of water due to precipitation, measured in cubic feet per year.

V_{e} - Amount of evaporated water, measured in cubic feet per year.

Then, we can expand this expression as follows:

V = f_{in}\cdot \Delta t+h_{p}\cdot A_{l}-h_{e}\cdot A_{l}-f_{out}\cdot \Delta t

V = (f_{in}-f_{out})\cdot \Delta t +(h_{p}-h_{e})\cdot A_{l} (Eq. 2)

Where:

f_{in} - Average watershed inflow, measured in cubic feet per second.

f_{out} - Average flow to be released, measured in cubic feet per second.

\Delta t - Yearly time, measured in seconds per year.

h_{p} - Change in lake height due to precipitation, measured in feet per year.

h_{e} - Change in lake height due to evaporation, measured in feet per year.

A_{l} - Surface area of the lake, measured in square feet.

If we know that f_{in} = 900\,\frac{ft^{3}}{s}, f_{out} = 300\,\frac{ft^{3}}{s}, \Delta t = 31,536,000\,\frac{second}{yr}, h_{p} = 32\,\frac{in}{yr}, h_{e} = 55\,\frac{in}{yr} and A_{l} = 47,000\,acres, the available amount of water for supply purposes in the Triangle area is:

V = \left(900\,\frac{ft^{2}}{s}-300\,\frac{ft^{3}}{s} \right)\cdot \left(31,536,000\,\frac{s}{yr} \right) +\left(32\,\frac{in}{yr}-55\,\frac{in}{yr} \right)\cdot \left(\frac{1}{12}\,\frac{ft}{in}\right)\cdot (47000\,acres)\cdot \left(43560\,\frac{ft^{2}}{acre} \right)V = 1.464\times 10^{10}\,\frac{ft^{3}}{yr}

The lake can withdraw a maximum of 1.464\times 10^{10} cubic feet per year to provide water supply for the Triangle area.

5 0
3 years ago
At what distance should the warning triangle be placed if a vehicle breaks down on the autobahn?
igor_vitrenko [27]

Answer:

The answer is 200 Meters

Explanation:

At what distance should the warning triangle be placed if a vehicle breaks down on the autobahn?

200 Meters

The Autobahn is the federal controlled-access highway system in Germany. The official German term is Bundesautobahn, which translates as "federal motorway". The literal meaning of the word Bundesautobahn is "Federal Auto Track".

4 0
4 years ago
Consider the products you use and the activities you perform on a daily basis. Describe three examples that use both SI units an
Gwar [14]

Answer: <u><em>Three examples of activities that I can perform on a daily basis that involves both metric units (SI units) and customary units include: measuring the length of a door using a tape measure, which includes both SI units and customary units (like feet, inches, and centimeters); baking a cake that requires one teaspoon (customary unit) of baking soda, which could also be converted into four grams (SI unit); weighing myself on a weighing scale, which can be measured by pounds (customary unit) or kilograms (metric unit).</em></u>

<u><em /></u>

Explanation: <u><em>I big brain</em></u><em> :) </em><u><em>(Not Really I Just Wanted To Help</em></u><em>) I hope this helped! ;)</em>

4 0
3 years ago
The diffusion coefficients for iron in nickel are given at two temperatures:T (K)D (m2/s)12739.4 × 10–1614732.4 × 10–14(a) Deter
hram777 [196]

Answer:

The diffusion coefficients for iron in nickel are given at two temperatures:

T (K)        1273          1473

D (m^{2}/s) 9.4 × 10^{-16}    2.4 × 10^{-14}

(a) Determine the values of Do and the activation energy Qd.

(b) What is the magnitude of D at 1100°C (1373 K)?

<em>A </em>

<em>The pre-exponential factor Do = 2.1 x </em>10^{-16}<em></em>

<em>The activation energy Qd = 252,609 J/mol</em>

<em>B</em>

<em>The diffusion coefficient D= 5.14 x </em>10^{-15}<em></em>

Explanation:

The full explanation is contained in the attached images;

5 0
4 years ago
Giải giúp mình câu này được không ạ.em cảm ơn
sp2606 [1]

Answer:

çâdßèöñbvjsjaushdhshs

4 0
3 years ago
Other questions:
  • Suppose that the president of a small island nation has decided to increase government spending by constructing three beach reso
    11·1 answer
  • Two metallic terminals protrude from a device. The terminal on the left is the positive reference for a voltage called vx (the o
    8·1 answer
  • An urn contains r red, w white, and b black balls. Which has higher entropy, drawing k ~2 balls from the urn with replacement or
    7·1 answer
  • The ladder has a uniform weight of 80 lb and rests against the smooth wall at B. If the coefficient of static friction at A is m
    5·1 answer
  • Find Re,Rc,R1 and R2!? Show your work.(hlp plz)
    7·1 answer
  • 1. Saturated steam at 4 bars absolute pressure with a mean velocity of 3 m/s flows through a horizontal SS304 stainless-steel pi
    6·1 answer
  • There are three MUXes in the EX stage. Among them, the 2 MUXes located at the top is meant to provide correct ALU source data 1
    13·1 answer
  • Technician A states that a pressure bleeder may be needed to bleed EBC system hydraulic circuits. Technician B states that once
    5·1 answer
  • Lana is attending the University of Georgia. Her school network is not accessible to any users outside of the school. This type
    13·2 answers
  • Ow is squeezing toothpaste out of a tube of toothpaste similar to peristalsis?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!