1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
3 years ago
5

Newton's law of cooling is:

Mathematics
1 answer:
Mnenie [13.5K]3 years ago
7 0

Answer:

t = \frac{ln(\frac{21}{59})}{-0.15}=6.887 hr

So it would takes approximately 6.9 hours to reach 32 F.

Step-by-step explanation:

For this case we have the following differential equationÑ

\frac{du}{dt}= -k (u-T)

We can reorder the expression like this:

\frac{du}{u-T} = -k dt

We can use the substitution w = u-T and dw =du so then we have:

\frac{dw}{w} =-k dt

IF we integrate both sides we got:

ln |w| = -kt +C

If we apply exponential in both sides we got:

w = e^{-kt} *e^c

And if we replace w = u-T we got:

u(t)= T + C_1 e^{-kt}

We can also express the solution in the following terms:

u(t) = (T_i -T_{amb}) e^{kt} +T_{amb}

For this case we know that k =-0.15 hr since w ehave a cooloing, T_{i}= 70 F, T_{amb}=11F, we have this model:

u(t) = (70-11) e^{-0.15t} +11

And if we want that the temperature would be 32F we can solve for t like this:

32 = 59 e^{-0.15 t} +11

21=59 e^{-0.15 t}

\frac{21}{59} = e^{-0.15 t}

If we apply natural logs on both sides we got:

ln (\frac{21}{59}) =-0.15 t

t = \frac{ln(\frac{21}{59})}{-0.15}=6.887 hr

So it would takes approximately 6.9 hours to reach 32 F.

You might be interested in
Solve the equation 3/4 X+-2X=-1/4+1/2X+5​
Vaselesa [24]

Answer:

x = -19/7 = -2.714

Step-by-step explanation:

Step  1  :

           1

Simplify   —

           2

Equation at the end of step  1  :

   3             1   1

 ((—•x)-2x)-(((0-—)+(—•x))+5)  = 0

   4             4   2

Step  2  :

           1

Simplify   —

           4

Equation at the end of step  2  :

   3             1  x

 ((—•x)-2x)-(((0-—)+—)+5)  = 0

   4             4  2

Step  3  :

Calculating the Least Common Multiple :

3.1    Find the Least Common Multiple

     The left denominator is :       4

     The right denominator is :       2

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 1 2

Product of all

Prime Factors  4 2 4

     Least Common Multiple:

     4

Calculating Multipliers :

3.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      -1

  ——————————————————  =   ——

        L.C.M             4

  R. Mult. • R. Num.      x • 2

  ——————————————————  =   —————

        L.C.M               4  

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-1 + x • 2     2x - 1

——————————  =  ——————

    4            4  

Equation at the end of step  3  :

   3                 (2x - 1)    

 ((— • x) -  2x) -  (———————— +  5)  = 0

   4                    4        

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  4  as the denominator :

        5     5 • 4

   5 =  —  =  —————

        1       4  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

(2x-1) + 5 • 4     2x + 19

——————————————  =  ———————

      4               4  

Equation at the end of step  4  :

   3                (2x + 19)

 ((— • x) -  2x) -  —————————  = 0

   4                    4    

Step  5  :

           3

Simplify   —

           4

Equation at the end of step  5  :

   3                (2x + 19)

 ((— • x) -  2x) -  —————————  = 0

   4                    4    

Step  6  :

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

         2x     2x • 4

   2x =  ——  =  ——————

         1        4  

Adding fractions that have a common denominator :

6.2       Adding up the two equivalent fractions

3x - (2x • 4)     -5x

—————————————  =  ———

      4            4

Equation at the end of step  6  :

 -5x    (2x + 19)

 ——— -  —————————  = 0

  4         4    

Step  7  :

Adding fractions which have a common denominator :

7.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-5x - ((2x+19))     -7x - 19

———————————————  =  ————————

       4               4    

Step  8  :

Pulling out like terms :

8.1     Pull out like factors :

  -7x - 19  =   -1 • (7x + 19)

Equation at the end of step  8  :

 -7x - 19

 ————————  = 0

    4    

Step  9  :

When a fraction equals zero :

9.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 -7x-19

 —————— • 4 = 0 • 4

   4  

Now, on the left hand side, the  4  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  -7x-19  = 0

Solving a Single Variable Equation :

9.2      Solve  :    -7x-19 = 0

Add  19  to both sides of the equation :

                     -7x = 19

Multiply both sides of the equation by (-1) :  7x = -19

Divide both sides of the equation by 7:

                    x = -19/7 = -2.714

One solution was found :

                  x = -19/7 = -2.714

Processing ends successfully

plz mark me as brainliest :)

8 0
3 years ago
- 1 2/3 + (-2 1/6)
Marizza181 [45]
-3.8333 roughly i think
6 0
2 years ago
CAN SOME ONE ANSWER THIS ILL GIVE ALL MY POINTS AND BRAINLIEST PLEASE
kotegsom [21]

1: KIH because of alternate exterier (or ACF because of verticle angle)

2. x

3. CFG

5 0
2 years ago
3/8 * 4 ____*____=_____=______
kirill [66]

Answer:

your answer is 1.5 150% or 3/2 there all the same anyway

Step-by-step explanation:

5 0
3 years ago
Find the value of 4th terms by using 3n-2​
Serga [27]
10 is the answer I think
7 0
3 years ago
Read 2 more answers
Other questions:
  • CONTINUED FROM PREVIOUS QUESTION <br> (SEE PICTURES BELOW)<br> Thanks <br> :)
    7·1 answer
  • What is the volume of the box if it is scaled down by a factor of 1/10? Length: 9 in Width: 3 in Height: 10 in
    7·1 answer
  • Add to find the sum 2/10 + 3/100 =
    10·2 answers
  • Find an equation of the line perpendicular to the graph of 4x-2y=9 that passes through the point at (4,6)
    8·2 answers
  • a store has 300 television on order and 80% are high definition . how many television are in order are high definition
    6·1 answer
  • Identify the property that is being used to solve the problem:
    15·1 answer
  • I need help on the second problem!!!
    12·1 answer
  • Marking brainliest
    12·1 answer
  • Use the rule: y=-3x+2 to find the value of y if x=5​
    12·2 answers
  • Trayvon wants to find out if tomato plants produce more tomatoes when they are fertilized. He grows 5 plants with fertilizer and
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!