F(x)=5/x
g(x)=2(x^2)+5x
f(x) has a domain of all real numbers excluding zero
g(x) has a domain of all real numbers
fog(x)=5/(2(x^2)+5x)
fog(x)=5/(x(2x+5))
fog(x) has a domain that excludes both zero and -5/2
x+y=8 and 25x+10y=170 are the linear equations.
x+y≤8 and 25x+10y≤170 are the inequalities.
Step-by-step explanation:
Given,
Worth of coins = $1.70 = 1.70*100 = 170 cents
Number of coins = 8
1 quarter = 25 cents
1 dime = 10 cents
Let,
x represent the number of quarters
y represent the number of dimes
1. Write an equation to represent the amount of coins Karen has.
x+y = 8
2.Write an equation to represent the value of the coins Karen has.
25x+10y=170
x+y=8 and 25x+10y=170 are the linear equations.
For inequalities, the amount cannot increase number of coins and worth but it can be less, therefore,
x+y≤8
25x+10y≤170
x+y≤8 and 25x+10y≤170 are the inequalities.
Keywords: linear equations, addition
Learn more about linear equations at:
#LearnwithBrainly
Given:
The expressions are:



To find:
The value of given expression by using integer tiles.
Solution:
We have,

Here, both number are positive. When we add 6 and 3 positive integer tiles, we get 9 positive integer tiles as shown in the below figure. So,

Similarly,

Here, 6 is positive and -4 is negative. It means we have 6 positive integer tiles and 4 negative integer tiles.
When we cancel the positive and negative integer tiles, we get 2 positive integer tiles as shown in the below figure. So,


Here, 6 is positive and -6 is negative. It means we have 6 positive integer tiles and 6 negative integer tiles.
When we cancel the positive and negative integer tiles, we get 0 integer tiles as shown in the below figure. So,

Therefore,
.
For any circle with Cartesian equation

,
we have that the centre of the circle is

, and the radius of the circle is

.
So in the case that

,
we essentially have that

.
So the centre of the circle is

, and the radius is

.