In physics, power is the rate of doing work. It is the amount of energy consumed per unit time. Having no direction, it is a scalar quantity. In the SI system, the unit of power is the joule per second (J/s), known as the watt in honour of James Watt, the eighteenth-century developer of the steam engine.
Continental plates are much thicker that Oceanic plates. At the convergent boundaries the continental plates are pushed upward and gain thickness. The rocks and geological layers are much older on continental plates than in the oceanic plates. The Continental plates are much less dense than the Oceanic plates.
The molarity of the solution will be 0.72 m.
The majority of reactions take place in solutions, making it crucial to comprehend how the substance's concentration is expressed in a solution when it is present. The number of chemicals in a solution can be stated in a variety of ways, including.
The symbol for it is M, and it serves as one of the most often used concentration units. Its definition states how many moles of solute there are in a liter of solution.
Given data:

Molarity can be determined by the formula:

where, M is molarity and V is volume.
Put the value of given data in above equation.
57.3 × 0.497 m = M × 39.5 L
M = 0.72 m
Therefore, the molarity of the solution will be 0.72 m
To know more about molarity
brainly.com/question/18648803
#SPJ4
F. because electronegativity generally increases as you move from left to right across a periodic table, and F is farther right than O
Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm