Answer:
The correct answer is -
1. a) The bubbles will shrink, some may vanish.
2. a) Can A will make a louder and stronger fizz than can B.
Explanation:
In the first question, it is given that the bottle is not opened and therefore, squeezing the bottle filled with a carbonated drink will increase the pressure on the carbonated liquid which forces the bubbles to dissolve or displace or vanish as it moves to empty space.
Thus, the correct answer would be - The bubbles will shrink, some may vanish
In the second question, there are two different conditions for two different unopened cans of carbonated water that are different temperatures one at the garage with higher temperature and one in the fridge at low temperature. As it is known that higher the temperature less will be solubility of gas in liquid so gas in can A will be less soluble which means it has more gas and it will make louder and stronger fizz than B which was stored at low temperature.
thus, the correct answer would be - Can A will make a louder and stronger fizz than can B.
The order would be coefficient, law of conservation of mass, products, and reactants respectively.
<h3>Word matching</h3>
The number written in front of a chemical symbol in an equation is called a coefficient.
The total mass of a system being unchanged is known as the law of conservation of mass
The substances made in chemical reactions are called products.
The starting materials in chemical reactions are called reactants.
More on reactions can be found here: brainly.com/question/17434463
#SPJ1
Answer:
For number 2, your answer is C.
Explanation:
The nucleus is positively charged because the proton is positive and a neutron is neutral. An electron has a negative charge.
Answer:
The activation energy for this reaction = 23 kJ/mol.
Explanation:
Using the expression,

Where,


is the activation energy
R is Gas constant having value = 8.314×10⁻³ kJ / K mol

The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (280 + 273.15) K = 553.15 K
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (376 + 273.15) K = 649.15 K
So,




<u>The activation energy for this reaction = 23 kJ/mol.</u>