We know that the element Z = 119 would be placed right below the Fr, in the column of the alcaline metals.
We also know that the trend in the electronegativity is to decrease when you go up-down ia group.
The known electronegativities of the elements of this group are:
Li: 0.98
Na: 0.93
K: 0.82
Rb: 0.82
Cs: 0.79
Fr: 0.70
Then the hypotetical element Z = 119 would probably have an electronegativity slightly below 0.70, for sure in the range 0.60 - 0.70.
The half-life of the reaction is 50 minutes
Data;
- Time = 43 minutes
- Type of reaction = first order
- Amount of Completion = 45%
<h3>Reaction Constant</h3>
Let the initial concentration of the reaction be X
The reactant left = (1 - 0.45) X
= 0.55 X
= X
For a first order reaction

<h3>Half Life </h3>
The half-life of a reaction is said to be the time required for the initial amount of the reactant to reach half it's original size.

Substitute the values

The half-life of the reaction is 50 minutes
Learn more on half-life of a first order reaction here;
brainly.com/question/14936355
Sodium potassium pump is an active pump which transfer sodium and potassium ions across the membrane with the expenditure of energy in the form of ATP.
This kind of pump is generally used in nerve cells.
The pump works against the concentration gradient as the pump moves three Na+ ions outside the cell and two K+ ions inside the cell, though there is a high concentration of Na+ outside the cell and a low concentration of K+ outside the cell.
Answer:
0.6 Ω
Explanation:
From the question given above, the following data were obtained:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
From Ohm's law,
V = IR
Where:
V => is the voltage
I => is the current
R => R is the resistance
With the above formula, we can obtain the resistance as follow:
Voltage (V) = 12 V
Current (I) = 20 A
Resistance (R) =?
V = IR
12 = 20 × R
Divide both side by 20
R = 12 / 20
R = 0.6 Ω
Thus the resistance is 0.6 Ω