<u>Answer:</u> The molecules of oxygen gas that will be reduced to water are 42 molecules
<u>Explanation:</u>
We are given:

The substance having highest positive
potential will always get reduced and will undergo reduction reaction. Here, oxygen will undergo reduction reaction will get reduced.
will undergo oxidation reaction and will get oxidized.
Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
The half reactions follows:
<u>Oxidation half reaction:</u>
( × 4)
<u>Reduction half reaction:</u>
( × 6)
<u>Overall reaction:</u> 
We are given:
Molecules of
= 28
By Stoichiometry of the reaction:
4 molecules of
reacts with 6 molecules of oxygen gas
So, 28 molecules of
will react with =
molecules of oxygen gas
Hence, the molecules of oxygen gas that will be reduced to water are 42 molecules
Answer:
The lung
Explanation:
The model of the respiratory system made by Megan consists of two balloons. The first balloon stretched across the bottom of the bottle represents the diaphragm which contracts and relaxes to allow air in and out of the lungs. The balloon inside the bottle represents one lung.
Breathing in causes the balloon inside the bottle to be filled with air. This is preceded by the expansion of the diaphragm which makes the lungs to be filled with air. Breathing out causes a contraction of the diaphragm thus making the lungs to let out air.
Answer:
1.2 liters.
Explanation:
Focus on the 4th digit: that's the ones column. The 3rd digit is the decimal place, just be sure to round up.
Answer:
B and E
Explanation:
These two options support the theory of plate tectonics.
Answer:
Experiments to determine mechanisms involve looking at indirect evidence to help support or disprove a proposed mechanism.
Most intermediates are not typically isolated to determine reaction mechanisms.
Carbocations are very reactive and are typically not isolated for analysis.
Scientists can prove that a specific mechanism exists.
Evidence of intermediates sometimes can be seen using techniques such as nuclear magnetic resonance spectroscopy
Explanation:
The study of reaction mechanism and chemical kinetics often form the main thrust of study in organic, inorganic and physical chemistry.
We often want to know the actual processes involved in the conversion of one specie to another. Unfortunately, this information may have to be obtained indirectly by certain chemical reactions or by the use of new instrumental methods such as nuclear magnetic resonance spectroscopy.
Many organic reactions have carbocation intermediates. These carbocations are relatively short-lived and are transient intermediates which are rarely isolated unless they are isolated in a molecular cage using a macromolecule or in superacids.
By intensive study, scientists can proof or disprove the authenticity of any proposed mechanism.
We must know that a transition state has partial bonds. It is often an extremely short-lived specie which cannot be isolated.