Whenever the motion of an object changes . . . speeding up, or slowing down,
or changing direction . . . that change is called "acceleration". Acceleration is produced by force on the object.If there is no force on the object, then there is no acceleration. That means that
its motion doesn't change. The object remains in constant, uniform motion .
moving with steady speed, in a straight line.
No force is necessary to keep an object moving, only to change its motion.
Okay for 8 it is the maximum levels will be higher and for 9 is poor circulation leads to lack of nutrients and oxygen
Answer: D. Mutation in coding sequences are more likely to be deleterious to the organism than mutations in noncoding sequences.
Explanation: It was not likely to be that the coding sequences are replicated more often. The only possible explanation is that the mutations in coding is more likely to be deleterious to the organism than mutations because it is in a non coding sequence.
Answer:
Explanation:
To calculate their average atomic masses which is otherwise known as the relative atomic mass, we simply multiply the given abundances of the atoms and the given atomic masses.
The abundace is the proportion or percentage or fraction by which each of the isotopes of an element occurs in nature.
This can be expressed below:
RAM = Σmₙαₙ
where mₙ is the mass of isotope n
αₙ is the abundance of isotope n
for this problem:
RAM of Li = m₆α₆ + m₇α₇
m₆ is mass of isotope Li-6
α₆ is the abundance of isotope Li-6
m₇ is mass of isotope Li-7
α₇ is the abundance of isotope Li-7
We are given with the initial volume of the substance and the molarity. The first thing that needs to be done is to multiply the equation in order to obtain the number of moles such as shown below.
number of moles = (40 mL) x (1 L / 1000 mL) x (0.3433 moles / L)
number of moles = 0.013732 moles
To get the value of the molarity of the diluted solution, we divide the number of moles by the total volume.
molarity = (0.013732 moles) / (750 mL / 1000 mL/L) = 0.0183 M
Similarly, we can solve for the molarity by using the equation,
M₁V₁ = M₂V₂
Substituting the known values in the equation,
(0.3433 M)(40 mL) = M₂(750 mL)
M₂ = 0.0183 M