Copper heat capacity would be <span>0.385J/C*gram which means it needs 0.385 Joule of energy to increase 1 gram of copper temperature by 1 Celcius. The calculation would be:
energy= heat capacity *mass * temperature difference
energy= </span>0.385J/C*gram * 6g * (90-20)
<span>energy= 161.7J
</span>
Answer:
Air can be described as: Mass and Mixture of Gases
Mass is defined as how much stuff an object contains - and by stuff, I mean matter, like atoms and molecules. And even though you can't see it, air has a lot of atoms and molecules. Air is a gas (as opposed to a liquid or a solid) and contains about 78% nitrogen, 21% oxygen, and 1% argon.
Explanation:
Answer:
A) 2.69 M
B) 0.059
Explanation:
A) We have:
33.8% solute by mass= 33.8 g solute/100 g solution
molarity = mol solute/ 1 L solution
molarity=
x
x
x 
molarity= 2.69 mol solute/L solution = 2.69 M
B) We know that there are 33.8 g of solute in 100 g of solution.
As the total solution is compounded by solute+solvent (in this case, solvent is water), the mass of water is the difference between the mass of the total solution and the mass of solute:
mass of water= 100 g - 33.8 g = 66.2 g
Now, we calculate the number of mol of both solute and water:
mol solute= 33.8 g solute x
= 0.232 mol
mol H20= 66.2 g H₂O x 
Finally, the mol fraction of solute (Xsolute) is calculated as follows:
Xsolute=
Xsolute= 0.059
The reaction that should be followed is
Na2SO4 + C<span>a(NO3)2 --> CaSO4 + 2NaNO3</span>
first calculate the limiting reactant
mol Na2SO4 = 0.075 L (<span>1.54×10−2 mol / L) = 1.155x10-3 mol
mol Ca(NO3)2 = 0.075 L (</span><span>1.22×10−2 mol / L) = 9.15x10-4 mol
so the limiting reactant is the Ca(NO3)2
so all of the Ca2+ will be precipitated, percentage unprecipitated = 0.00 % </span>