![\bf \textit{difference and sum of cubes} \\\\ a^3+b^3 = (a+b)(a^2-ab+b^2) ~\hfill a^3-b^3 = (a-b)(a^2+ab+b^2) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \boxed{a^6+b^6}\implies a^{2\cdot 3}+b^{2\cdot 3}\implies (a^2)^3+(b^2)^3 \\[2em] [a^2+b^2] [(a^2)^2-a^2b^2+(b^2)^2]\implies \boxed{(a^2+b^2)(a^4-a^2b^2+b^4)}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdifference%20and%20sum%20of%20cubes%7D%20%5C%5C%5C%5C%20a%5E3%2Bb%5E3%20%3D%20%28a%2Bb%29%28a%5E2-ab%2Bb%5E2%29%20~%5Chfill%20a%5E3-b%5E3%20%3D%20%28a-b%29%28a%5E2%2Bab%2Bb%5E2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cboxed%7Ba%5E6%2Bb%5E6%7D%5Cimplies%20a%5E%7B2%5Ccdot%203%7D%2Bb%5E%7B2%5Ccdot%203%7D%5Cimplies%20%28a%5E2%29%5E3%2B%28b%5E2%29%5E3%20%5C%5C%5B2em%5D%20%5Ba%5E2%2Bb%5E2%5D%20%5B%28a%5E2%29%5E2-a%5E2b%5E2%2B%28b%5E2%29%5E2%5D%5Cimplies%20%5Cboxed%7B%28a%5E2%2Bb%5E2%29%28a%5E4-a%5E2b%5E2%2Bb%5E4%29%7D)
about the second one... well, is a "fait accompli" that using the pythagorean theorem, if x = 8 and y = 5, the hypotenuse must be √(8² + 5²) = √(89), which is neither of those choices.
5, 8, 13 are no dice, namely 5² + 8² ≠ 13
25, 64, 17 is are no dice too, because 25² + 17² ≠ 64²
however, 5,12 and 13 are indeed a pythagorean triple
also is 39, 80, 89.
when looking for a pythagorean triple, recall that c² = a² + b².
so the longest leg is the sum of the square of the small ones.
so what you'd do is, check the small legs, square them, add them up, if they're indeed a pythagorean triple, they "must" add up to the longest leg.
Answer:
5(3√x) +9(3√x) = 15√x+27√x= 42√x
5∛x + 9∛x = 14∛x
Step-by-step explanation:
Answer:
what year was his trip? I can figure it out I just need the year
Step-by-step explanation:
Actually, this answer would be true. Why?
The first equation is: a(sub <em>n</em>) = 8, 13, 18, 23
The second is: a(sub 1)=8 ; a(sub <em>n</em>)= a(sub <em>n</em>-1)+5
if you wish to find the second term, plug two into the equation for <em /><em>n</em>
8+5=13
to find the third, plug the second term, 13, in for <em>n.</em>
13+5=18.
Hope this helped! I know it's a bit on the late side, but at least you can get the general idea!
Answer:
40
Step-by-step explanation:
The denominators are 4, 5, and 8.
Write the prime factorizations:
4 = 2²
5 = 5
8 = 2³
To find the least common denominator, multiply the prime numbers with the highest exponents.
2³ × 5 = 40