Answer:
B.)The volume of the triangular prism is not equal to the volume of the cylinder.
Step-by-step explanation:
Let A be the cross-sectional area of both congruent right triangular prism and right cylinder.
Since the prism has height 2 units, its volume V₁ = 2A.
Since the cylinder has height 6 units, its volume is V₂ = 6A
Dividing V₁/V₂ = 2A/6A =1/3
V₁ = V₂/3.
The volume of the prism is one-third the volume of the cylinder.
So, since the volume of the prism is neither double nor half of the volume of the cylinder nor is it equal to the volume of the cylinder, B is the correct answer.
So, the volume of the triangular prism is not equal to the volume of the cylinder.
Given that:
Area of triangle=23 cm²
Dilation factor= 6
It means that the area of the dilated triangle is 6²=36 times of the original.
Now area of dilated triangle, A'=36 x 23
A'= 828 cm²
Answer: Area of dilated triangle is 828 cm².
Answer:
1/50
Step-by-step explanation:
You have a 300 feet side length square and you need to calculate the length of the diagonal. When you split the square along one diagonal you get triangles, so you can apply Pythagoras' Theorem, with the hypotenuse as the needed diagonal.
a²+b²=c²
300²+300²=c²
2*300²=c²
√(2*300²)=c
√(2) * √(300²)=c
√(2) * 300=c
c~424.26 ft which is the solution/option c
Answer: 12b
Step-by-step explanation: you multiply 4 by 3 but keep the b