<h3><u>Answer;</u></h3>
Energy
<h3><u>Explanation;</u></h3>
- A wave is a transmission of disturbance from one point to another. All waves involve transmission of energy from one point called the source to another point.
- <em><u>Waves describes various ways in which energy can be transferred from a point source.</u></em>
- <em><u>In electromagnetic waves</u></em><em>, for instance, </em><em><u>energy transmission occurs as a result of vibrations of electric and magnetic fields</u></em><u>.</u>
- <u><em>In mechanical waves energy transmission is as a result of vibration of particles in the medium used</em></u>. For example in sound waves, energy is transferred through vibration of particles of air or particles of a solid or medium through which sound travels through.
Answer: Magnetic and gravitational force
Explanation: When a magnet and an iron nail are kept at a distance,the magnet attracts the nail without touching using magnetic force. In this example, the magnet and the nail are interacting.
The earth pulls the moon towards it and keeps it in orbit without touching it, using gravitational force. In this example,the moon and the earth are interacting.
PLEASE RATE 5 STARS AND VOTE AS BRAINLIEST:)
(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)(^o^)
The electric potential V(z) on the z-axis is : V = 
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
<u>Given data :</u>
V(z) =2kQ / a²(v(a² + z²) ) -z
<h3>Determine the electric potential V(z) on the z axis and magnitude of the electric field</h3>
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV
----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = 
V = ![\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%5Calpha%20%5B%20%28a%5E2%2Bz%5E2%29%5E%5Cfrac%7B1%7D%7B2%7D%20-z%20%5D)
= ![\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%20%28%5Cfrac%7BQ%7D%7B%5Cpi%20%5Calpha%20%5E2%7D%29%5B%28a%5E2%20%2Bz%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20-z%20%5D)
Therefore the electric potential V(z) = 
Also
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : brainly.com/question/25923373
Answer:
The example of the center of the gravity is the middle of a seesaw
Explanation:
I hope this will help you and plz mark me brainlist
Answer:
Normal stress = 66/62.84 = 1.05kips/in²
shearing stress = T/2 = 0.952/2 = 0.476 kips/in²
Explanation:
A steel pipe of 12-in. outer diameter d₂ =12in d₁= 12 -4in = 8in
4 -in.-thick
angle of 25°
Axial force P = 66 kip axial force
determine the normal and shearing stresses
Normal stress б = force/area = P/A
= 66/ (П* (d₂²-d₁²)/4
=66/ (3.142* (12²-8²)/4
= 66/62.84 = 1.05kips/in²
Tangential stress T = force* cos ∅/area = P/A
= 66* cos 25/ (П* (d₂²-d₁²)/4
=59.82/ (3.142* (12²-8²)/4
= 59.82/62.84 = 0.952kips/in²
shearing stress = tangential stress /2
= T/2 = 0.952/2 = 0.476 kips/in²