Answer:
Remains the same
Explanation:
The speed of waves of higher and lower frequency both will be same.
the speed of sound in a medium is constant and independent of it's frequency. Moreover, when the frequency changes wavelength changes accordingly, such that their product remains constant.
we know that
υ×λ = constant = velocity
υ= frequency
λ= wavelength.
This problem must be solved using a sketch. I attached an illustration of the problem.
You must trace the ray that reflects from the top off the table to your eyes. This how eyesight works, light rays reflects off the objects into your eyes.
Law of reflection tells us that light ray reflects off the surface at the same angle in which it falls on it( i attached another illustration of this).
Now we can write tangens equations:

We solve for h:
Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Solving the above equation we get

So, the time the package was in the air is 1.97 seconds
Q: The small piston of a hydraulic lift has a cross-sectional of 3.00 cm2 and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN?
Answer:
225 N
Explanation:
From Pascal's principle,
F/A = f/a ...................... Equation 1
Where F = Force exerted on the larger piston, f = force applied to the smaller piston, A = cross sectional area of the larger piston, a = cross sectional area of the smaller piston.
Making f the subject of the equation,
f = F(a)/A ..................... Equation 2
Given: F = 15.0 kN = 15000 N, A = 200 cm², a = 3.00 cm².
Substituting into equation 2
f = 15000(3/200)
f = 225 N.
Hence the downward force that must be applied to small piston = 225 N
Let the vector position of the object in the (x-y) plane be

The applied force is

By definition, the applied torque is

Answer: