<span>There is an low cost and quickest alternative available for adaptive optics. Name of this technique is wavefront coding. The numerical analysis pretends to show the robustness of the technique under changes in pupil diameter and wavefront shape including intersubject and intrasubject variability, using always the same restoration filter or image decoder .Using this technique it is possible to obtain high resolution images under different ocular aberrations and pupil diameters with the same decoder, opening the possibility of real time high resolution images.</span>
Answer:
298,220 N
Explanation:
Let the force on car three is T_23-T_34
Since net force= ma
from newton's second law we have
T_23-T_34 = ma
therefore,
T_23-T_34 = 37000×0.62
T_23= 22940+T_34
now, we need to calculate
T_34
Notice that T_34 is accelerating all 12 cars behind 3rd car by at a rate of 0.62 m/s^2
F= ma
So, F= 12×37000×0.62= 22940×12= 275280 N
T_23 =22940+T_34= 22940+ 275280= 298,220 N
therefore, the tension in the coupling between the second and third cars
= 298,220 N
Energy at top = U = mgh = 40 * 9.8 * 12 = 4704 J
Energy at bottom = 1/2 mv² = 1/2 * 40 * 10² = 4000 / 2 = 2000 J
Energy Lost = Final - Initial = 4704 - 2000 = 2704 J
In short, Your Answer would be 2704 Joules
Hope this helps!
Answer:
98 N
Explanation:
Weight is mass times acceleration due to gravity. Assuming the ball is near the surface of the earth, g = 9.8 m/s².
W = mg
W = (10 kg) (9.8 m/s²)
W = 98 N
Answer:
a = 45 m/s/s
Explanation:
As we know that total mass of the rocket is

total mass of the fuel is given as

all the fuel is burnt in 15 s
so rate of the fuel burning is given as


now the thrust force on the rocket is given as


so we have

so we have


now acceleration is rate of change in velocity

so acceleration at t = 15 s
